Whither † SUSY?

G. Ross, IPPP, Durham, January 2012

* whither Archaic or poetic adv
1. to what place?
2. to what end or purpose?
conj
to whatever place, purpose, etc.
[Old English hwider, hwæder; related to Gothic hvadrē; modern English form influenced by HITHER]

Little hierarchy problem \Rightarrow definite SUSY structure

Ellis, Enquist, Nanopoulos, Zwirner Barbieri, Giudice

MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

 \Rightarrow Correlations between SUSY breaking parameters and/or additional low-scale states

• The CMSSM

$$\mu_{0}, m_{0}, m_{1/2}, A_{0}, B_{0}$$

$$M_{Z}^{2} = a_{0}m_{0}^{2} + a_{1/2}m_{1/2}^{2} + a_{\mu}\mu^{2} + .. \ll \widetilde{m}_{q_{i}}^{2}, M_{i}^{2}$$

$$(= 0.6m_{q_{3}}^{2}(M_{X}) + 0.6m_{U_{3}}^{2}(M_{X}) + 3M_{3}^{2}(M_{X}) + 0.2A_{t}^{2}(M_{X}) - 2\mu^{2}(M_{X}) + ...)$$
SPS1a

Constraints

 $\begin{array}{l} {\rm SUSY\ particle\ masses}\\ 3.20 < 10^4\ {\rm Br}(b \rightarrow s\gamma) < 3.84\\ {\rm Br}(b \rightarrow \mu\mu) < 1.8 \times 10^{-8}\\ \delta a_\mu < 292 \times 10^{-11}\\ -0.0007 < \delta\rho < 0.0012\\ {\rm Radiative\ EW\ breaking}\\ {\rm Relic\ density\ unrestricted} \end{array}$

$$\Delta \equiv \max \left| \Delta_p \right|_{p = \{\mu_0^2, m_0^2, m_{1/2}^2, A_0^2, B_0^2\}}, \qquad \Delta_p \equiv \frac{\partial \ln v^2}{\partial \ln p}$$

$$\Delta_{Min} = 9, \quad m_h = 114 \pm 2GeV$$

(No Higgs bound applied)

The CMSSM

Constraints

S.Cassel, D.Ghilencea, GGR

Focus Point

$$2 | y_t |^2 (m_{H_u}^2 + m_{Q_3}^2 + m_{-1}^2) + 2 | a_t |^2$$

$$16\pi^2 \frac{d}{dt} m_{H_u}^2 = 3X_t - 6g_2^2 | M_2 |^2 - \frac{6}{5}g_1^2 | M_1 |^2$$

$$16\pi^2 \frac{d}{dt} m_{Q_3}^2 = X_t + X_b - \frac{32}{3}g_3^2 | M_3 |^2 - 6g_2^2 | M_2 |^2 - \frac{2}{15}g_1^2 | M_1 |^2$$

$$16\pi^2 \frac{d}{dt} m_{-1}^2 = 2X_t - \frac{32}{3}g_3^2 | M_3 |^2 - \frac{32}{15}g_1^2 | M_1 |^2$$

$$m_{H_{u}}^{2}(Q^{2}) = m_{H_{u}}^{2}(M_{p}^{2}) + \frac{1}{2}\left(m_{H_{u}}^{2}(M_{p}^{2}) + m_{Q_{3}}^{2}(M_{p}^{2}) + m_{L_{u_{3}}}^{2}(M_{p}^{2})\right)\left[\left(\frac{Q^{2}}{M_{p}^{2}}\right)^{\frac{3y_{t}^{2}}{4\pi^{2}}} - 1\right]$$
$$\approx -\frac{2}{3}, \ Q^{2} \approx M_{Z}^{2}$$

Focus Point

$$2 | y_t |^2 (m_{H_u}^2 + m_{Q_3}^2 + m_{-1}^2) + 2 | a_t |^2$$

$$16\pi^2 \frac{d}{dt} m_{H_u}^2 = 3X_t - 6g_2^2 | M_2 |^2 - \frac{6}{5}g_1^2 | M_1 |^2$$

$$16\pi^2 \frac{d}{dt} m_{Q_3}^2 = X_t + X_b - \frac{32}{3}g_3^2 | M_3 |^2 - 6g_2^2 | M_2 |^2 - \frac{2}{15}g_1^2 | M_1 |^2$$

$$16\pi^2 \frac{d}{dt} m_{u_3}^2 = 2X_t - \frac{32}{3}g_3^2 | M_3 |^2 - \frac{32}{15}g_1^2 | M_1 |^2$$

$$m_{H_{u}}^{2}(Q^{2}) = m_{H_{u}}^{2}(M_{p}^{2}) + \frac{1}{2}(m_{H_{u}}^{2}(M_{p}^{2}) + m_{Q_{3}}^{2}(M_{p}^{2}) + m_{\tilde{u}_{3}}^{2}(M_{p}^{2}))\left[\left(\frac{Q^{2}}{M_{p}^{2}}\right)^{\frac{3y_{t}^{2}}{4\pi^{2}}} - 1\right]$$
$$m_{0}^{2} \qquad 3m_{0}^{2} \qquad \approx -\frac{2}{3}, \ Q^{2} \approx M_{Z}^{2}$$

CMSSM: $m_{H_u}^2(0) = m_{Q_3}^2(0) = m_{-\frac{1}{u_3}}^2(0) \equiv m^2$

Natural choice

i.e. $m_{Q_3}^3$, $m_{\overline{u}_3}^2 \gg M_Z^2$ possible

Feng, Matchev, Moroi Chan, Chattopadhay, Nath Barbieri, Giudice

(Gauge mediation: $m_{H_u}^2(0) \neq m_{Q_3}^2(0) \neq m_{\overline{Q_3}}^2(0)$ no focus point-fine tuned)

CMSSM: Dark Matter structure

Relic density restricted

- $1 \quad h^0$ resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $\tilde{\tau}$ co-annihilation
- 4 t co-annihilation
- 5 A^0 / H^0 resonant annihilation

Within 3σ WMAP: $\Delta_{Min} = 15$, $m_h = 114.7 \pm 2 GeV$

< 3 σ WMAP: $\Delta_{Min} = 18$, $m_h = 115.9 \pm 2GeV$

Cassel, Ghilencea, GGR

Relic density restricted

- $1 h^0$ resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $\tilde{\tau}$ co-annihilation
- 4 t co-annihilation
- 5 A^0 / H^0 resonant annihilation

Within 3σ WMAP: $\Delta_{Min} = 15, \quad m_h = 114.7 \pm 2GeV$

 $< 3\sigma$ WMAP: $\Delta_{Min} = 18, \quad m_h = 115.9 \pm 2GeV$

Cassel, Ghilencea, GGR

 $(\Delta < 100, m_h > 114.5 GeV)$

Direct dark matter searches: (spin independent)

DM - Scaled spin independent cross section for LSP-proton scattering:

• New degrees of freedom e.g. singlet extensions

• New focus points?

 $\begin{array}{lll} \mbox{Gauginos:} & M_{\widetilde{g},\widetilde{W},\widetilde{B}} & \mbox{Non-universal gaugino correlations} & & \mbox{Kane, King} \\ & \mbox{Lebedev, Nilles, Ratz...} \\ & \mbox{Horton, GGR} & & \mbox{Willes, Ratz...} \\ & \mbox{Horton, GGR} & & \mbox{Willes, Ratz...} \\ & \mbox{M}_0, A_0 & \mbox{correlations?} & & \mbox{Feldman, Kane, Kuflik, Lu} \\ & \mbox{M}_0, A_0, B_0 \gg \mu, m_a & m_{h_u}^2 \left(t\right) = f_{M_0} M_0^2 - f_{A_0} A_0^2 \\ & \mbox{f}_{M_0} \sim f_{A_0} \sim 0.1 & + M_0 \sim A_0 & \Rightarrow & m_{h_u}^2 \sim 10^{-2} m_{3/2}^2 \\ & \mbox{\Delta}_{h_t} \sim 10^4, & M_0 \sim 10 TeV \end{array}$

Reduced fine tuning : singlet extensions

$$\begin{split} W &= W_{\rm Yukawa} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad {\sf GNMSSN} \end{split}$$
 c.f. $W &= W_{\rm Yukawa} + \lambda SH_uH_d + \frac{\kappa}{3}S^3 \qquad {\sf NMSSM} \end{split}$

Model independent analysis:

 $\mu_{s} >> m_{3/2}$

 $W_{eff}^{GNMSSM} = \left(H_u H_d\right)^2 / \mu_s + \mu H_u H_d$ $\frac{\mu}{\mu_{s}} \left(\left| H_{u} \right|^{2} + \left| H_{d} \right|^{2} \right) H_{u} H_{d} \qquad \mathbf{v}^{2} = -\frac{m^{2}}{\lambda}$

Cassel, Ghilencea, GGR Casas, Espinosa, Hidalgo Dine, Seiberg, Thomas Batra, Delgardo, Tait, Kaplan Delgardo, Kolda, Puente GGR, Schmidt Hoberg, Staub Bastero-Gil, Hugonie, King...

Reduced fine tuning in GNMSSM (but not so much in NMSSM)

Reduced fine tuning : singlet extensions

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad \text{GNMSSN}$$

c.f. $W = W_{\text{Yukawa}} + \lambda SH_uH_d + \frac{\kappa}{3}S^3 \qquad \text{NMSSN}$

Model independent analysis:

 $\mu_{s} >> m_{3/2}$

 $W_{eff}^{GNMSSM} = \left(H_u H_d\right)^2 / \mu_s + \mu H_u H_d$ $\frac{\mu}{\mu_{s}}\left(\left|H_{u}\right|^{2}+\left|H_{d}\right|^{2}\right)H_{u}H_{d} \qquad \mathbf{v}^{2}=-\frac{m^{2}}{\lambda}$

Cassel, Ghilencea, GGR Casas, Espinosa, Hidalgo Dine, Seiberg, Thomas Batra, Delgardo, Tait, Kaplan Delgardo, Kolda, Puente GGR,Schmidt Hoberg, Staub Bastero-Gil, Hugonie,King...

GNMSSM (NMSSM) unnatural?discrete R-symmetry.....

Discrete R-symmetry and MSSM singlet extension

NMSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

$$W = W_{NMSSM} = W_{MSSM} + \lambda SH_u H_d + \kappa S^3$$

N	q_{10}	$q_{\overline{5}}$	q_{H_u}	q_{H_d}	q_s
4	1	1	0	0	2
8	1	5	0	4	6
7					

R-symmetry ensures singlets light

Discrete R-symmetry and MSSM singlet extension

NMSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

$$W = W_{NMSSM} = W_{MSSM} + \lambda SH_u H_d + \kappa S^3$$

Ν q_{10} $q_{\overline{5}}$ q_{H_u} q_{H_d} q_s 2 0 0 4 1 1 8 5 4 6 0 1

R-symmetry ensures singlets light

$$\underbrace{\text{D=5 operators}}_{3q_{10} + q_{\overline{5}} + q_{H_u} + q_{H_d}} = 4 \quad \text{Mod N} \implies 3q_{10} + q_{\overline{5}} = 0 \quad \text{Mod N} \implies \frac{1}{M} \mathcal{QQL} \quad \frac{1}{M} LLH_u H_u$$

Weinberg operator

Discrete R-symmetry and MSSM singlet extension

NMSSM spectrum No perturbative μ term Commutes with SO(10) Anomaly cancellation

$$W = W_{NMSSM} = W_{MSSM} + \lambda SH_u H_d + \kappa S^3$$

up and down Yukawas allowed

N $q_{\overline{5}}$ q_{H_d} q_s q_{10} q_{H_u} 0 0 2 4 1 8 5 4 0 6

R-symmetry ensures singlets light

$$\underbrace{\text{D=5 operators}}_{3q_{10} + q_{\overline{5}} + q_{H_u} + q_{H_d} = 4 \quad \text{Mod N} \Rightarrow 3q_{10} + q_{\overline{5}} = 0 \quad \text{Mod N} \Rightarrow \frac{1}{M} \mathcal{QQL} \quad \frac{1}{M} LLH_u H_u$$
Weinberg operator

SUSY breaking

 $\langle W \rangle, \langle \lambda \lambda \rangle$ R=2 non-perturbative breaking

Domain walls and tadpoles safe Abel

 $Z_{4,8}^{R} \rightarrow Z_{2}^{R} \quad R-parity$ $\mu \sim m_{3/2}, \ O(\frac{m_{3/2}}{M^{2}}QQQL)$

GENERAL-NMSSM PHENOMENOLOGY

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S$$

- SUSY structure
 - $\mu_s \gg \mu$ MSSM SUSY structure with reduced fine tuning (for $\mu_s < 5TeV$)
 - $\mu_s \sim \mu$ SUSY states can be heavier $(v^2 = m^2 / \lambda, \lambda \text{ increase})$
- Higgs structure (h_u, h_d, s)
 - $\mu_s \gg \mu$ MSSM Higgs structure
 - $$\begin{split} \mu_s, m_s, b_s \sim \mu & \text{Mixing between states} & h_1 \simeq H_u + \varepsilon S, \quad h_2 = S \varepsilon H_u \\ & (M_{h_1} \ll M_{h_2}, \quad \varepsilon \ll 1) \end{split}$$

(Invisible Higgs decay 45 GeV < $m_{\tilde{S}} < 70 \text{ GeV}, BR\left(\frac{h_1 \rightarrow \tilde{S}\tilde{S}}{h_1 \rightarrow \gamma\gamma, b\bar{b}}\right) \gg 1$)

Reduced fine tuning : nonuniversal gaugino masses

Reduced fine tuning : nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\bar{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

 $M_3: M_2: M_1 = \eta_3: 1: \eta_1$

Reduced fine tuning: nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\bar{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

 $2.7n \cdot 1 \cdot 0.5n$

Natural ratios? e.g.:

GUT: $SU(5): \Phi^{N} \subset (24 \times 24)_{symm} = 1 + 24 + 75 + 200; SO(10): (45 \times 45)_{symm} = 1 + 54 + 210 + 770$

	$\mathbf{r}_3 \cdot \mathbf{r} \cdot \mathbf{r}_1$	
Representation	$M_3: M_2: M_1$ at M_{GUT}	$M_3: M_2: M_1$ at M_{EWSB}
1	1:1:1	6:2:1
24	2:(-3):(-1)	12:(-6):(-1)
75	1:3:(-5)	6:6:(-5)
200	1:2:10	6:4:10

 $n \cdot 1 \cdot n$

String:
$$(3+\delta_{GS}):(-1+\delta_{GS}):(-\frac{33}{5}+\delta_{GS})$$

(OII, also mixed moduli anomaly)

Phenomenology

• Gaugino mass ratios

$$\frac{M_i(Q)}{M_{1/2}} = \eta_i \frac{\alpha_i(Q)}{\alpha_i(M_X)} \quad \Rightarrow \begin{array}{l} \frac{M_1(Q)}{M_2(Q)} \approx 0.5\eta_1 \\ \Rightarrow M_2(Q) \approx 0.8M_{1/2} \\ \frac{M_3(Q)}{M_2(Q)} \approx 2.7\eta_3 \end{array}$$

.... gauginos can be very heavy

• Light neutralino and 2 charginos nearly degenerate, $|M_1|, |M_2| \gg \mu$

$$\begin{split} m_{\chi_2^0} &- m_{\chi_1^0} = M_Z^2 \left(\frac{s_W^2}{M_1} + \frac{c_W^2}{M_2} \right) + \mathcal{O}(\frac{M_Z^3}{M_2^2}) \\ m_{\chi_1^\pm} &- m_{\chi_1^0} = \frac{1}{2} M_Z^2 \left(\frac{s_W^2}{M_1} + \frac{c_W^2}{M_2} \right) + \frac{1}{2} M_Z^2 \left(\frac{s_W^2}{M_1} - \frac{c_W^2}{M_2} \right) \epsilon \sin 2\beta + \mathcal{O}(\frac{M_Z^3}{M_2^2}) \end{split}$$

+ for $|M_1| < \mu$, Bino or Higgsino LSP candidate

Dark Matter

Figure 9: Contour plots of $\Omega_{\chi}h^2$ in the 54 and 210 models. These are for the hypersurface in parameter space with $\tan \beta = 10$ and $A_0 = 0$. The narrow, yellow region, which lies between the regions of over- and under- abundance, has a dark matter abundance that satisfies, within 3σ , the constraint given in Eq (47). The (red) dashed and (red) dot-dashed contours indicate where the Higgs mass, m_{h^0} , is 111 GeV and 114 GeV, respectively.

Figure 7: Contour plots of δa_{μ} , in the $m_0 - M_{1/2}$ plane. This is for the hypersurface in parameter space with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$. Dashed (black, with alternating long and short dashing) contours are shown for $\delta a_{\mu} \times 10^{10} = 27.5 + n\sigma'$, where $n \in \mathbb{Z}$ and the error $\sigma' = 8.1$ combines all experimental and theoretical errors in quadrature. The (red) dashed and (red) dot-dashed contours indicate where the Higgs mass, m_{h^0} , is 111 GeV and 114 GeV, respectively, whilst the dotted contours correspond to the $|\Delta| = 5$ and $|\Delta| = 10$ contours from Fig 2.

Figure 7: Contour plots of δa_{μ} , in the $m_0 - M_{1/2}$ plane. This is for the hypersurface in parameter space with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$. Dashed (black, with alternating long and short dashing) contours are shown for $\delta a_{\mu} \times 10^{10} = 27.5 + n\sigma'$, where $n \in \mathbb{Z}$ and the error $\sigma' = 8.1$ combines all experimental and theoretical errors in quadrature. The (red) dashed and (red) dot-dashed contours indicate where the Higgs mass, m_{h^0} , is 111 GeV and 114 GeV, respectively, whilst the dotted contours correspond to the $|\Delta| = 5$ and $|\Delta| = 10$ contours from Fig 2.

 \Rightarrow GNMSSM+large tan β ?

$$a_{\mu}^{\chi^{\pm}} \approx \frac{1}{32\pi^2} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} g_2^2 \operatorname{sgn}(\mu M_2) \tan \beta.$$

Summary

- Hierarchy problem \implies SUSY breaking structure and/or further states
- **CMSSM** $m_i = M_0 Max[\Delta_{EW}, \Delta_{\Omega}] = 15(29), m_h = 114(116) \pm 2GeV$

Complementary DM & LHC searches

(Gauge mediation $\Delta > 100$)

• NMSSM Reduced $\Delta \implies GNMSSM \implies Z_{4R}, Z_{8R}$ SUSY states can be (slightly)heavier $m_h \rightarrow 130 GeV$

Gaugino focus point $M_i = \eta_i M_{1/2}$

Characteristic η_i Light $\chi^{0,\pm}$ $\delta(b \rightarrow s\gamma)$ significant $\delta(g-2)$ Small(?)

Summary

1000 700

500

200

150 100

100 200

m1/2 /GeV

- Hierarchy problem \implies SUSY breaking structure and/or further states
- **CMSSM** $m_i = M_0 Max[\Delta_{EW}, \Delta_{\Omega}] = 15(29), m_h = 114(116) \pm 2GeV$

Complementary DM & LHC searches

5000

500 1000 2000

 m_0 / GeV (a) $m_b > 111 \,\text{GeV}$

LHC (Full region *LHC* $14TeV 10 fb^{-1}$)

• NMSSM Reduced $\Delta \implies GNMSSM \implies Z_{4R}, Z_{8R}$ tinvisible Higgs a possibility

Gaugino focus point

...Light Higgs search may provide the first crucial test!

LHC - Regions of low fine tuning $\Delta < 100$:

	SUG0	SUG1	SUG2	SUG3	SUG5
m_0	1455	1508	2270	113	725
$m_{1/2}$	160	135	329	383	535
A_0	238	1492	30	-220	1138
aneta	22.5	22.5	35	15	50
μ	191	433	187	529	581
$m_{ ilde{g}}$	482	414	900	898	1252
$m_{ ilde{u}_L}$	1469	1509	2331	826	1315
$m_{\tilde{t}_1}$	876	831	1423	602	1000
$m_{\tilde{\chi}_1^+}$	106	104	168	293	416
$m_{\tilde{\chi}^0_2}$	108	104	181	293	416
$m_{\tilde{\chi}_1^0}$	60	53	123	155	222
Δ	9	50	45	68	84
$\Omega_{ ilde{\chi}_1^0} h^2$	0.41	0.13	0.10	0.13	0.10
${\rm BR}(b \to s \gamma) \times 10^4$	3.4	3.7	3.4	3.2	3.2
$BR(B_s \to \mu^+ \mu^-) \times 10^9$	3.0	2.9	2.9	3.4	1.7
$\delta a_{\mu} imes 10^{10}$	4.5	3.2	3.2	22.5	16.6
$\sigma_{\chi p}^{\rm SI}~({\rm pb})~{\times}10^{10}$	108	5	432	24	101
$\sigma^{(LO)}(7 \text{ TeV}) \text{ (pb)}$	8	12	0.9	0.4	0.02
$\sigma^{(LO)}(14 \text{ TeV}) \text{ (pb)}$	40	75	3	5	0.4

Effect of focus point limited by h_t:

Fine tuning for measured parameter :

 $\Delta'(h_t) \simeq \left| \frac{\Delta h_t}{M_Z} \frac{\partial M_Z}{\partial h_t} \right|$

 $\Delta(p)^{-1}$ is probability p lies in range $p, p + \delta p$

Ciafolini, Strumia Romanino, Strumia

For measured parameter, probability p lies in range,

compatible with measured value is: $P \sim \frac{\delta P}{\sigma}$

$$\sim \frac{\delta p}{\sigma_p} = \Delta(p)^{-1} \frac{p}{\sigma_p}$$

• (General) Gauge mediation in the MSSM

$$\begin{split} M_{\tilde{\lambda}_{i}}(M_{mess}) &= k_{i} \frac{\alpha_{i}(M_{mess})}{4\pi} \Lambda_{G} \\ m_{\tilde{f}}^{2}(M_{mess}) &= 2 \sum_{i=1}^{3} C_{i} k_{i} \frac{\alpha_{i}^{2}(M_{mess})}{(4\pi)^{2}} \Lambda_{S}^{2} \\ k_{i} &= (\frac{5}{3}, 1, 1) \\ k_{i} \alpha_{i} (M_{GUT}) &= 1, \quad i = 1, 2, 3 \end{split}$$
 No focus point

(Ordinary gauge mediation $\Lambda_G = \Lambda_S$)

Meade, Seiberg, Shih

Fine tuning in General Gauge Mediation

 $B \to X_{s}\gamma, B \to \tau\mu, B \to \mu^{+}\mu^{-}, B \to D\tau\mu,$ $D_{s} \to \mu\nu, D_{s} \to \tau\nu, K \to \mu\nu/\pi \to \mu\nu, \Delta_{0-}$

no focus point

 $\Delta > 100$

Abel, Dolan, Jaeckel, Khoze (Giusti, Romanino, Strumia)

Figure 5: Contour plots of the branching ratio $\operatorname{Br}(\overline{B} \to X_s \gamma)$ in the $m_0 - M_{1/2}$ plane. This is for the hypersurface in parameter space with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$. Solid (black) contours are shown for $\operatorname{Br}(\overline{B} \to X_s \gamma) \times 10^4 = 3.52 + n\sigma$, where $n \in \mathbb{Z}$ and the error $\sigma = 0.34$ combines all experimental and theoretical errors in quadrature. The (red) dashed and (red) dot-dashed contours indicate where the Higgs mass, m_{h^0} , is 111 GeV and 114 GeV, respectively, whilst the dotted contours correspond to the $|\Delta| = 5$ and $|\Delta| = 10$ contours from Fig 2.