Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion

BSM Higgs in ATLAS and CMS

A.-M. Magnan Imperial College London

11/01/2012, BSM 4 LHC UK Workshop

Introduction ●○○○○	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM oo	Conclusion o
Introduc	ction				

- Extensions to Standard Model: additional Higgs bosons.
- Neutral Higgs similar to SM Higgs, but different couplings.
- Branching ratios (BR) for Higgs decays can be enhanced significantly depending on parameter space.

 $\begin{array}{l} \mbox{Tracker: } \sigma/p_T \simeq 5 \times 10^{-5} \times p_T \oplus 0.01 \\ \mbox{Muon standalone @ 1 TeV: } \sigma/p_T \simeq 0.07 \end{array}$

Tracker: $\sigma/p_T \simeq 1.5 \times 10^{-5} \times p_T \oplus 0.005$ Muon standalone @ 1 TeV: $\sigma/p_T \simeq 0.10$

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
00000					

Summary of channels covered in this talk

Channel	ATLAS	CMS
	MSSM	
$\Phi \rightarrow \tau^+ \tau^-$	$e\mu, e/\mu\tau_{had}, \tau_{had}\tau_{had}$	$e\mu, e/\mu\tau_{had}$
$b\bar{b} + \Phi \rightarrow b\bar{b} + \tau^+ \tau^-$	1.06 fb ⁻¹	4.6 fb ⁻¹
	ATL-CONF-2011-132	CMS-PAS-HIG-11-029
$pp \rightarrow t\bar{t} \rightarrow H^+ W^- b\bar{b}, H^+ \rightarrow \tau^+ \nu_{\tau}$	$\tau \rightarrow e, \mu, \tau_{had}$	$e + \mu, \mu + \tau_{had}, hadronic$
$pp \rightarrow t\bar{t} \rightarrow H^+H^-b\bar{b}, H^{\pm} \rightarrow \tau\nu_{\tau}$	1.03 fb ⁻¹	0.98 fb ⁻¹
	ATL-CONF-2011-138,-151	CMS-PAS-HIG-11-008
$pp \rightarrow t\bar{t} \rightarrow H^+ W^- b\bar{b}$	$H^+ ightarrow car{s}$	-
	0.035 fb ⁻¹	-
	ATL-CONF-2011-094	-
	Extended Higgs sector	
$pp \rightarrow H^{++}H^{}, pp \rightarrow H^{++}H^{}$	$H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$	$H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}, H^{\pm} \rightarrow I, I = e, \mu, \tau$
	1.6 fb ⁻¹	0.98 fb ⁻¹
	ATL-CONF-2011-127	CMS-PAS-HIG-11-007
	NMSSM	•
$a_1 \rightarrow \mu^+ \mu^-$	0.039 fb ⁻¹	-
	ATL-CONF-2011-020	-

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
00000					

Physics Objects Reconstruction and Identification

Objects used: electrons, muons, taus, jets, b-jets.

Object	Building Blocks	Identification	Isolation
Electrons	tracks, ECAL clusters	Shower shape. Tight for se-	tracks+Calo deposits $\Delta R =$
		lection, Loose for rejection	0.2-0.4, absolute or relative
Muons	central+muon tracks	Fit quality, inner hits. Tight for	tracks+Calo deposits $\Delta R =$
		selection, Loose for rejection	0.2-0.4, absolute or relative
Jets	Tracks, ECAL+HCAL clus-	Particle Flow (CMS)	-
	ters. Anti-k _T 0.4/0.5 AT-		
	LAS/CMS		
Hadronic Taus	Jets, tracks, ECAL+HCAL	Likelihood, BDT (ATLAS),	-
	clusters	PF-based decay topologies	
		HPS, neural net (CMS)	
b-tagging	tracks, secondary vertices	Track counting, Flight decay	-
		significance. Loose WP.	

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
00000					

Performance of tau-ID Algorithms

- All decays considered.
- Hadronic decays: tau ID, very similar performances for ATLAS and CMS.

Introduction	MSSM Neutral Higgs ●○○○○○○○○○	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM oo	Conclusion o
MSSM H	iggs Sector				

- Five Higgs bosons: h, A, H, H⁺, H⁻.
- At tree level, Higgs sector of MSSM defined by m_A and tanβ. Radiative corrections: dependence on additional parameters.
- Upper theoretical limit on $m_h \simeq 135 \, \text{GeV}.$

Introduction	MSSM Neutral Higgs o●oooooooo	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM oo	Conclusion o

The $pp \rightarrow \Phi + X$, $\Phi \rightarrow \tau \tau$ channel

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM 00	Conclusion o

Validation with SM measurements

BSM Higgs in ATLAS and CMS

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM 00	Conclusion o

Analysis Setup

	eμ	$e/\mu \tau$	$\tau \tau$		
	CN	AS	•		
iso e,µ	$p_T > 20, 10 \text{GeV}$	$p_T > 20/15 \text{GeV}$	-		
	$ \eta < 2.5, 2.1$	$ \eta < 2.1$	-		
	opp ch	arges	-		
	veto other	leptons	-		
τ_h	-	$p_T > 20 \text{ GeV}$	-		
	-	$ \eta < 2.3$	-		
W+jets rejection	$P_{\zeta} = -0.85 P_{\xi}^{ m vis} > -25~{ m GeV}$	$P_{\xi} = 0.5 P_{\xi}^{ m vis} > -20~{ m GeV}$	-		
Jets	Max 1 jet p _T	> 30 GeV	-		
b-jet	TCHE, p _T	> 20 GeV	-		
	ATL	AS			
iso e, μ	p _T > 22, 10/20, 15 GeV	$p_T > 25/20 \text{ GeV}$	-		
	$ \eta < 2.47, 2.5$	$ \eta < 2.47, 2.5$	-		
	opp charges				
		veto other leptons			
τ_h	-	$p_T > 20 \text{ GeV}$	$p_T > 45, 30 \text{ GeV}$		
	-	$ \eta < 2.5$	$ \eta < 2.5$		
W+jets rejection	$p_T^e + p_T^\mu + MET < 120 \text{GeV}$	MET > 20 GeV	MET > 25 GeV		
	$\Delta \phi(e,\mu) > 2.0$	$m_T < 30 \text{ GeV}$			

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
	000000000				

Background Evaluation Methods

- Reconstruct $\tau \tau$ mass for each final state.
- Use data-driven shape for dominant backgrounds.
- Z→ ττ: embedding method, using Z→ μμ events replacing muons by simulated taus with same kinematics event-by-event.
- QCD/W+jets: ABCD method, use sign and isolation criteria to define signal and bkg regions, $n_A = n_B \times \frac{n_C}{n_D}$
- Several definitions of m_{ττ}.
- Likelihood fit, add systematics as nuisance parameters.

	CMS	ATLAS			
all	eμ	${ m e}/{\mu au}$	$\tau \tau$		
Mass	likelihood	$m^{\textit{eff}}_{ au au} = \sqrt{({m{p}}_{ au^+} + {m{p}}_{ au^-} + {m{p}}_{\textit{miss}})^2}$	m _{MMC}	m _{visible}	
Reso@130GeV	21%	?	17%	24%	
$Z \rightarrow \tau \tau$	$Z \rightarrow \mu \mu$	$Z \rightarrow \mu \mu$			
QCD	same-sign	ABCD	same-sign	ABCD	
W+jets	same-sign	MC	same-sign	MC/embedding W $\rightarrow \mu \nu$	
Others	MC	MC	MC	MC	

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
	000000000				

ATLAS Control Plots

BSM Higgs in ATLAS and CMS

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM 00	Conclusion o
ATLAS I	Results				

- All channels combined.
- Fully hadronic channel improves high-mass limits.

Introduction	MSSM Neutral Higgs ooooooooooo	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM oo	Conclusion o
CMS Co	ontrol Plots				

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM 00	Conclusion o
CMS Re	sults				

- Most up-to-date exclusion with full 2011 dataset.
- Better limits: improved by using b-tagging.

• Reach
$$\tan\beta = 7.8$$
 at $m_A = 160$ GeV.

CMS Preliminary 2011 4.6 fb⁻¹

leave with LHC eimulation						
	000000000					
Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion	

Issue with LHC simulation

- Only top-loop included in gg → Φ simulation in LHC analysis.
- MSSM with high tanβ and mhmax scenario: b-loop dominates ⇒ softer spectrum for pT(Φ).
- After final analysis acceptance: small effect.

J. Alwall, Q Li, F. Maltoni arXiv:1110.1728 p_{h}^{T} [GeV]

$M_{\rm H}$ [GeV]	Acceptance, <code>PYTHIA</code> $gg \to H$	Acceptance, re-weighted for b-loop	Correction factor
140	0.072 ± 0.001	0.070 ± 0.001	0.97 ± 0.01
400	0.149 ± 0.001	0.152 ± 0.001	1.02 ± 0.02

Table 1: The $e + \tau_h$ acceptances before and after re-weighting to correct for b-loop contribution.

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs ●oooooooo	Doubly Charged Higgs	NMSSM 00	Conclusion o

MSSM Charged Higgs Sector

- Production: $gg \to t\bar{t} \to H^{\pm} W^{\mp} b\bar{b}, H^+H^- b\bar{b}$ for $m_{H^{\pm}} < m_t$ or $gb \to tH$ for $m_{H^{\pm}} > m_t$.
- BR($t \rightarrow Hb$) highly dependent on tan β .
- BR($H^{\pm} \rightarrow \tau \nu_{\tau}$)> 95% for tan β > 3.

T. Plehn et al.,

hep-ph/0312286

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
		00000000			

Topologies considered

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
		00000000			

CMS Results channel-by-channel

BSM Higgs in ATLAS and CMS

CMC Deputte combined					
Introduction	MSSM Neutral Higgs	MSSM Charged Higgs ○○○●○○○○○	Doubly Charged Higgs	NMSSM 00	Conclusion o

Results being updated for Moriond 2012 with 2 fb⁻¹ and shape analysis.

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs oooo●oooo	Doubly Charged Higgs	NMSSM 00	Conclusion o

ATLAS analysis in fully hadronic channel

A.-M. Magnan

BSM Higgs in ATLAS and CMS

Durham, 11/01/2012 22 / 32

BSM Higgs in ATLAS and CMS

Durham, 11/01/2012 23 / 32

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
		000000000			

Results for ATLAS analysis in leptonic channels

No signal is seen

- ATL-CONF-2011-151
- Upper limits on branching ratio Br(t→Hb) x Br(H→τν) and on MSSM parameter space of Higgs mass vs tanβ are set

Olga Igonkina

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs ○○○○○○○●	Doubly Charged Higgs	NMSSM 00	Conclusion o

ATLAS Results for low tan $\beta H^+ \rightarrow c\bar{s}$ channel

• Old analysis with 2010 data, valid at low $tan\beta$.

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
			•000		

Search for doubly charged Higgs

- Higgs boson triplet Φ⁰, Φ⁺, Φ⁺⁺ is predicted in little Higgs models
- Φ^{++} Yukawa coupling matrix $Y \Phi_{l_i l_j}$ is proportional to the light neutrino mass matrix and allows to test the neutrino masses by measuring BR($\Phi^{++} \rightarrow l_i l_j$)
- A.Hektor, M. Kadastik, M. Muntel et al., Nucl.Phys. B787 (2007) 198-210

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs ○●○○	NMSSM 00	Conclusion o
Event se	election and ba	ackgrounds at	CMS		

3-4 lepton final states

- Muons: $P_T > 5 \text{ GeV}$
- Electrons: P_T>15 GeV
- Taus: P_T>15 GeV
- At least two leptons with 35 and 10 GeV
- Dilepton trigger 17/8
- Backgrounds
 - Z/W + jets
 - top antitop
 - ZZ, WW

10 three-lepton events and 1 •••**four-**lepton event found 4

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs ००●०	NMSSM oo	Conclusion o

CMS Results

Introduction

MSSM Neutral Higgs

MSSM Charged Higgs

Doubly Charged Higgs

NMSSM Cor

NI

Conclusion o

Doubly Charged Higgs $H^{++} \rightarrow \mu^+ \mu^+$

- Predicted in little Higgs, Higgs triplet and left-right symmetric models
- pT(μ₁)>20GeV, pT(μ₂)>10GeV
 Same charge muons 1.6 fb⁻¹
- Look for di-muon mass resonance

Right-handed Higgs mass <295GeV Left-handed Higgs mass <375GeV @ 95%CL if $Br(H^{++} \rightarrow \mu^{+}\mu^{+}) = 100\%$

Limits on Br(H⁺⁺ \rightarrow µ⁺µ⁺) as function of Higgs mass are also available

Olga Igonkina

HCP 2011 : SUSY and BSM Higgs @ ATLAS

Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion
				••	

Search for NMSSM Higgs $a_1 \rightarrow \mu \mu$

- NMSSM solves MSSM "m-term problem" by introducing additional complex singlet scalar field S.
- neutral Higgs boson sector expands to three CP-even scalars (h1,h2,h3), two CP-odd scalars (a1,a2).
- "Ideal"- NMSSM Higgs scenarios : $2m_{\tau} < m_{a1} < 2m_b$ (prefers m_{a1} close to $2m_b$), Dermisek, Gunion 2010.

00000	0000000000	000000000	0000	00	0	
Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM	Conclusion	

Conclus	ion				
Introduction	MSSM Neutral Higgs	MSSM Charged Higgs	Doubly Charged Higgs	NMSSM oo	Conclusion •

- BSM Higgs well-covered at LHC. Some channels studied at Tevatron not covered yet at LHC: e.g. MSSM bbH to bbb.
- Similar channels covered by ATLAS and CMS.
- Fully hadronic MSSM H→ ττ improves ATLAS limits, but CMS limits also much improved by requiring b-tagging.
- Parameter space closing in for MSSM H $\rightarrow \tau \tau$: going now as low as tan $\beta = 7.8$ at m_A = 160 GeV.
- Most results expected to be updated for Moriond 2012 on full 2011 dataset.

BACKUPS

ATLAS and CMS calorimeters

ATLAS Calorimeters

- EM: |η| < 3.2,</p>
 - Pb/LAr calorimeter,
 - 22-26 X_o, 1.2 λ,
 - 3 longitudinal sections,
 - $\Delta\eta \times \Delta\Phi = 0.025 \times 0.025 0.1 \times 0.1$
 - $\sigma/E \simeq 10\%/\sqrt{E}$.
- Central Hadronic: $|\eta| < 1.7$,
 - Fe/Scintillator sampling calorimeter
 - 9 7.4 λ,
 - 3 longitudinal sections,
 - $\Delta\eta \times \Delta\Phi = 0.1 \times 0.1 0.2 \times 0.1$,
 - $\sigma/E \simeq 50\%/\sqrt{E} \oplus 0.03.$
- EndCap Hadronic: $1.7 < |\eta| < 3.2$,
 - Cu/LAr sampling calorimeter,
 - 4 longitudinal sections,
 - $\Delta \eta \times \Delta \Phi = 0.1 \times 0.1 0.2 \times 0.2$

• FCAL: $3 < |\eta| < 4.9$,

- EM: Cu/LAr, HAD: W/LAr calorimeter,
- 🕚 10 λ,
- 1 EM + 2 HAD longitudinal sections,
- $\Delta\eta \times \Delta\Phi = 0.75 \times 0.65 5.4 \times 4.7$

CMS calorimeters

- EM : |η| < 3,</p>
 - PbWO₄ cristals,
 - 24.7-25.8 X_o, 1.1 λ,
 - 1 longitudinal section + preshower (3 X₀),
 - $\Delta \eta \times \Delta \Phi = 0.0175 \times 0.0175$,
 - $\sigma/E \simeq 2 5\%/\sqrt{E}$.
- HCAL : $|\eta| < 3$,
 - Brass/Scintillator sampling calorimeter,
 - 6-10 λ
 - 2 longitudinal sections + Outer HCAL (3 λ for |η| < 1.4)
 - $\Delta \eta \times \Delta \Phi \ge 0.0875 \times 0.0875$,
 - $\sigma/E \simeq 100\%/\sqrt{E} \oplus 0.05.$
- HF : $3 < |\eta| < 5$,
 - Fe/Quartz fibers, Cerenlov light
 - EM 90 X_o, HAD 9.5 λ
 - 1 EM + 1 HAD longitudinal sections