Searches for TeV-scale Gravity

James Frost

LHC4BSM Workshop, Durham

Friday 13th January 2012

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

Friday 13th January 2012 1 / 51

.

- Black Hole Models and Properties
- Search for Black Holes in pp Collisions at $\sqrt{s} = 7$ TeV with 1 fb⁻¹ Data Set (CMS)
- Searches for TeV-scale gravity signatures in final states with leptons and jets (ATLAS)
- Search for Black Holes in Same-sign Dimuons (ATLAS)

• Summary

★ ∃ ► 4

nac

- ADD Extra-dimensional models with low scale gravity allow for the production of non-perturbative gravitational states such as black holes and string balls.
- A fundamental gravity scale *M_D* in the TeV range would allow exploration of such states at the LHC.
- In such models the produced black hole mass ranges from M_{TH} to \sqrt{s} .
- These states decay to multiple high p_T particles, of all SM types.
- Expect a range of multiplicities from signal this is model-dependent but relatively high - not below 3 particles emitted, usually much higher.

Black Hole Formation

The black disk approach

- Thorne's hoop conjecture (*Magic without Magic 231 (1972)*): For a given concentration of matter/energy, if it fits inside a hoop with the Schwarzchild radius $r_{\rm S}$ for that mass, then a black hole forms.
- Black disk cross section:

$$\sigma_{\text{disk}} \sim \pi \mathbf{r}_{\mathbf{S}}^{\mathbf{2}}, \ \mathbf{r}_{\mathbf{s}} = \frac{C_n}{M_{4+n}} \left(\frac{\sqrt{s}}{M_{4+n}}\right)^{\frac{1}{n+1}}$$

S. B. Giddings and S. D. Thomas, hep-ph/0106219 S. Dimopoulos and G. Landsberg, hep-ph/0106295

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

Ideal Production Model

- Ideally, set up the spatial metric for two highly boosted particles (modelled as black holes).
- Include spin and charge.
- Evolve system.
- Obtain final metric and radiation.

Black Hole Production

- Though numerical relativity methods are beginning to make rapid progress in the area, this is still not realised.
- Trapped surface methods give bounds on the maximum impact parameter (and hence parton-level cross-section). (Yoshino Rychkov hep-th/0503171).
- Also on the maximal losses of M and J from the black hole, for given impact parameter.
- Black hole cross-sections can be large.
- But assuming the maximum allowed losses can reduce the differential cross section strongly (arXiv:0904.0979, hep-ph/0609055).
- Models use semi-classical approximation, the validity of which is suspect when the BH mass at production is not much larger than *M_D*, motivating the use of a lower production mass threshold (*M_{TH}*).

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

Particle Creation

- Thermal, Hawking radiation is thought to be emitted by black holes due to quantum effects.
- Black hole looses mass and evaporates
- All SM particles are emitted, primarily according to their SM degrees of freedom.
- The spectrum is that of a grey-body, with a characteristic temperature, and spectrum modified by transmission (grey-body) factors, which depend upon *n*, spin and properties of the black hole itself.
- Microscopic black holes have high Hawking temperatures
- Expect multiple emissions of high-energy particles, particularly jets.

Black Hole Lifecycle

- Black holes formed will be rapidly rotating, asymmetric, and "hairy".
- Four stages of subsequent evolution.
 - Balding Phase
 - Spin-down Phase
 - Schwarzschild Phase
 - Planck (Quantum) Phase

→ 3 → 4 3

< 47 ▶

- During the 2000s, there has been much progress in the theory describing these phenomena.
- Encoded in several Monte-Carlo generators to simulate these events and allow their analysis in greater detail.
 - Charybdis 2 JF et al. arXiv:0904.0979,
 - BlackMax D. Dai et al. arXiv:0902.3577,
 - QBH D. Gingrich arXiv:0911.5370
- There are, however, still considerable uncertainties over some modelling aspects.
- Need careful consideration in experimental searches
 - Production losses in production, cross-section uncertainty.
 - Graviton emission in Hawking phase.
 - Remnant modelling Quantum gravity important can have a large effect on multiplicity, often targeted by experimental searches.

What's different about black holes?

Signatures of semi-classical black holes:

- Potentially very high cross sections.
- High multiplicity events, with multiple very high p_T objects.
- Rotation \rightarrow slightly reduced multiplicity but harder spectrum
- Wide range of SM particles many hadronic jets, but also highly boosted photons and leptons → hard to replicate through other BSM scenarios.
- Potentially large missing energy from losses in formation.

< □ > < 同 > < 三 > < 三

Phenomenology

Rotating versus Non-rotating black holes

- Very high p_T objects.
- Multiple objects in the final states.
- Harder spectrum, but correspondingly lower multiplicity from rotating black holes

.

2011 has been a very successful year for the LHC. The LHC Experiments have been taking data very efficiently - we now have recorded over 5 fb⁻¹! - summer results shown here are based on the first ~ 1 fb⁻¹

A D M A A A M M

→ ∃ →

Search for Black Holes in *pp* Collisions at $\sqrt{s} = 7$ TeV with 1 fb⁻¹ Data Set **CMS PAS EXO-11-071** also for 2010 data: arXiv:1012.3375 (PLB 429 (2011) 434-453)

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

Friday 13th January 2012 12 / 51

.

Search for Black Holes in *pp* Collisions at $\sqrt{s} = 7$ TeV with 1 fb⁻¹ Data Set CMS PAS EXO-11-071

- Search for deviation from Standard Model expectations in high multiplicity final states.
- For such events, construct the scalar E_T sum of the objects (reconstructed and selected leptons, photons and jets), including only those above 50 GeV (note E_T^{miss} is also included if it exceeds this value), hereinafter S_T.
- Consider a series of signal regions, requiring a minimum event multiplicity, *N*, greater than X (with X varying from 3 to 8).
- The predominant background is inevitably multi-jet processes, with a small component of direct photon production and prompt lepton processes.

- *H_T* triggers used to collect a sample of 1.09 fb⁻¹ of 2011 collision data, with a threshold of 350-550 GeV depending upon the period.
- Event Selection
 - ▶ Jets, reconstructed using the Anti- k_T algorithm, with R=0.5 and $|\eta| < 2.6$
 - Electrons and photons with $E_T > 20$ GeV and $|\eta| < 1.44$ or $1.56 < |\eta| < 2.4$.
 - Muons with $p_T > 20$ GeV and $|\eta| < 2.1$.
- This trigger selection is fully efficient above the minimum offline *H_T* requirement used, of 700 GeV.
- A set of rotating and non-rotating black hole benchmark samples generated by BlackMax used to give limits for two specific models.

- Dominant multijet background estimated using the S_T multiplicity invariance method.
- This relies on the independence of the shape of S_T with respect to the number of final state objects, N.
- Tested extensively empirically.
- The dijet (N=2) and N=3 S_T distributions are fitted with a function at low S_T (800-2500):
 <sup>p₀(1+x)^{p₁}/<sub>y<sup>p₂+p₃lnx</sub>

 </sup></sub></sup>
- Other choices of fit functions give a systematic uncertainty, as does the difference between the N=2 and N=3 fits.
- Can then apply this fit function and its uncertainties to the distributions for N ≥ 2, N ≥ 3, etc.
- Systematic uncertainty varies from 7% to 165%.

(日)

nac

Validating S_T Invariance

Exclusively 2-object (left) and 3-object final states (right) CMS PAS EXO-11-071

590

S₇ Distributions CMS PAS EXO-11-071

 No evidence of a signal - proceed to set limits on the cross-section times acceptance for new physics production of these final states.

Sac

17/51

• • • • • • • • • • • •

A sample candidate event CMS PAS EXO-11-071

590

James Frost (University of Cambridge)

95% C.L. cross-section limits on multi-object final states CMS PAS EXO-11-071

590

A B > A B

< 17 ▶

Moving towards 95% C.L. limits on the models directly... CMS PAS EXO-11-071

• For each signal sample, optimise the signal region definition (minimum S_T and N) using $\frac{S}{\sqrt{(S+B)}}$.

- Search for high multiplicity final states
- No deviations from SM expectations observed.
- Derive model-independent limits on the production of high multiplicity final states, as a function of *N* and S_T^{min}.
- Also a model-specific exclusion in the 2-D model parameter space.

Why look for TeV-scale gravity with leptons?

- Expect a wide range of particle types to be produced, determined primarily by the SM degrees of freedom and gravitational transmission factors.
- Expect leptons in signal, with a reasonable (15-50%) chance per event.
- Powerful channel (SM bkgs dramatically reduced), at the cost of little inclusivity (few leptons in e.g. split brane scenarios).
- Most robust signatures suggest (relatively) high multiplicity and presence of leptons.

Searches for TeV-gravity signatures in final states with leptons and jets http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CONFNOTES/ATLAS-CONF-2011-147/

A (10) A (10)

Searches for TeV-gravity signatures in final states with leptons and jets

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2011-147/

- Search for deviations from the Standard Model in final states with multiple, high-p_T objects including at least one lepton.
- Construct the scalar p_T sum of objects (jets and leptons) in the event, requiring 3 high p_T objects - the signal is manifest as an excess at high values.
- Perform a counting experiment in several high Σp_T signal regions.
- In the absence of a signal set CLs 95% C.L. limits on the effective cross section for high-∑ p_T multi-object final states containing a high-p_T (> 100 GeV) isolated lepton inside acceptance.
- For black hole and string ball benchmark samples, set exclusion contours from the combination of the channels in a plane of M_D and M_{TH} .

- Data: integrated luminosity 1.04 fb⁻¹ for e/γ and muon streams.
- Event Selection
 - Single lepton triggers.
 - Select reconstructed physics objects
 - ★ High quality electrons and muons with p_T > 40 GeV, and $|\eta|$ < 2.47 (electrons), $|\eta|$ < 2.0 (muons).
 - ★ Jets reconstructed using the Anti- k_T algorithm, with an R parameter R = 0.4, and $p_T > 40$ GeV and $|\eta| < 2.8$.

• Signal MC:

- Use both Charybdis and BlackMax generators.
- Two samples used to guide the analysis and illustrate signal event properties.
- Benchmark samples produced for both string balls and black holes.
- Different models for some important theoretical modelling uncertainties.

Preselection, Signal and Control regions ATLAS-CONF-2011-147

- Main discriminating observable:
 - $\sum p_{T}$ Scalar p_{T} sum of all selected leptons and jets $(p_{T} > 40 \text{ GeV}).$
- Preselection requirements are used to select an event sample with similar kinematics and composition to the signal regions for this search. Events are required to have:
 - At least 3 objects (e,μ ,jet) above a 40 GeV p_T threshold.
 - $\sum p_{\rm T} > 300$ GeV.
 - Electron channel events require the leading electron to be tight.
 - Most control regions, used to estimate and determine the backgrounds, consider subsets of these events.
- Signal Regions raise the object and $\sum p_{T}$ requirements further:
 - At least 3 objects (e,μ ,jet) above a 100 GeV p_T threshold.
 - ► Several signal regions defined with $\sum p_{\rm T}$ thresholds ranging from 700 1500 GeV.

Background Estimation ATLAS-CONF-2011-147

- The dominant Standard Model sources of background are: W+jets, Z/₂*+jets, tt and QCD multijet processes (e only).
 - QCD electron channel: Estimated by a data-driven matrix method, considering the signal region with the tight electron requirement, and by relaxing it to medium.
 - QCD muon channel: Predicted to be negligible by MC simulations and ABCD method in data.
 - Z+jets estimated using a partially data-driven method.
 - Monte Carlo predictions are normalised to the data in a control region and extrapolated to the signal region using Monte Carlo simulations.
 - ★ Events with 2 opposite-sign electrons (muons) with $80 < m_{\parallel} < 100$ GeV, and $300 < \sum p_{\rm T} < 700$ GeV.
 - W-jets and tt
 processes combined estimate, due to their similar behaviour in ∑p_T.
 - ★ Normalised according to data in a control region with one e (μ), 40 < m_T < 100 GeV, 30 < E_T^{miss} < 60 GeV and 300 < $\sum p_T$ < 700 GeV.

27/51

Preselection Distributions - leading lepton p_T

Electron Channel - left, Muon Channel - right ATLAS-CONF-2011-147

Yellow band indicates uncertainties from finite statistics, jet and lepton energy scales and resolutions.

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

Results ATLAS-CONF-2011-147

• Event yields following the data-driven background estimates described.

$\sum p_{\rm T} ({\rm GeV})$	QCD	W+jets/tt	Z+jets	Total SM	Data
> 700	$137 \pm 10 \pm 45$	$371\pm10\pm77$	119 \pm 4 \pm 22	627 \pm 15 \pm 92	586
> 800	$75\pm7\pm25$	$210\pm 6\pm 42$	$74\pm4\pm13$	$358\pm10\pm51$	348
> 900	$42\pm5\pm14$	122 \pm 5 \pm 28	$46.9 \pm 2.8 \pm 8.6$	$210\pm8\pm33$	196
> 1000	$24.6 \pm 4.2 \pm 8.0$	$73\pm3\pm17$	$22.2 \pm 1.8 \pm 4.5$	119 \pm 5 \pm 20	113
> 1200	$8.1 \pm 2.5 \pm 2.7$	$28.5 \pm 1.8 \pm 7.6$	$9.1 \pm 1.0 \pm 1.9$	$45.7 \pm 3.2 \pm 8.3$	41
> 1500	$1.3 \pm 1.1 \pm 0.4$	$6.3\pm0.8\pm2.5$	$2.6\pm0.5\pm0.5$	$10.2 \pm 1.4 \pm 2.6$	8

$\sum p_{\rm T}$ (GeV)	W+jets/tt	Z+jets	Total SM	Data
> 700	$236\pm7\pm43$	49 \pm 3 \pm 11	$285\pm8\pm44$	241
> 800	$129 \pm 4 \pm 25$	$32.0 \pm 2.4 \pm 7.5$	161 \pm 5 \pm 26	145
> 900	$71\pm3\pm16$	$19.5 \pm 1.7 \pm 5.0$	91 \pm 3 \pm 16	78
> 1000	$38.9 \pm 2.3 \pm 8.3$	$13.1 \pm 1.3 \pm 3.1$	$52.0 \pm 2.6 \pm 8.9$	46
> 1200	$9.9 \pm 1.2 \pm 3.6$	$4.0\pm0.6\pm1.2$	$14.0 \pm 1.3 \pm 3.8$	15
> 1500	$2.2 \pm 0.5 \pm 1.1$	$0.6\pm0.2\pm0.4$	$2.8 \pm 0.5 \pm 1.1$	2

 No evidence of a signal - p-values for all signal regions lie between 0.43–0.47.

590

Final Distributions I - leading object p_T

Electron Channel - left, Muon Channel - right

590

- ⇒ >

< 🗇 >

Final Distributions II - Σp_T

Electron Channel - left, Muon Channel - right

590

• • • • • • • • • • • •

Interpretation I

Model-independent limits Electron Channel - left, Muon Channel - right

Effective cross section limits set: $\sigma_{\rm eff} = \sigma \left(pp \rightarrow \ell X \right) \cdot \epsilon_{\rm rec} \cdot \epsilon_{\rm acc}.$

For the electron (muon) channel $\epsilon_{\text{rec}} \cdot \epsilon_{\text{acc}}$ is (74) % ((51) %).

$\sum p_{\rm T} ({\rm GeV})$	$\sigma_{\rm eff}$ 95% C.L. Upper Limit (fb)		
	Observed (Expected)		
	Muon Channel	Electron Channel	
> 700	77 (94)	169 (188)	
> 800	51 (58)	102 (112)	
> 900	32 (39)	65 (73)	
> 1000	20 (24)	43 (45)	
> 1200	13 (12)	20 (22)	
> 1500	4.8 (4.8)	8.7 (9.7)	

Interpretation II

Benchmark model limits - Rotating Black Holes

Models using a high (left) and low (right) multiplicity remnant model

590

Interpretation II

Benchmark model limits - Stringballs Non-rotating (left) and Rotating (right) models.

- A search for TeV-scale gravity signatures (black holes and string balls) in final states with at least 3 high p_T objects, including one lepton, using a luminosity of 1 fb⁻¹.
- No deviation from Standard Model predictions is observed.
- Limits are set on models of TeV-scale gravity:
 - As exclusion contours for benchmark models as functions of the fundamental gravity scale and mass threshold.
 - On the effective cross section for new physics in these final states.

Search for Strong Gravity Signatures in Same-sign Dimuon Final States using the ATLAS detector at the LHC http://arxiv.org/abs/1111.0080

< 🗇 > < 🖻 > < 🖻

Search for black holes with same-sign dimuons arXiv:1111.0080

- Look for final states that are prevalent in black hole events with low rates from Standard Model processes.
- One candidate is same-sign dilepton events here look in the muon channel for dimuon candidates.
- Require two muons with leading $p_T > 25$ GeV, subleading $p_T > 15$ GeV and $|\eta| < 2.4$
- Require the muon leading in p_T to be isolated.
- Maintain signal efficiency by dropping this requirement on the sub-leading muon.
- Require the event to have at least 10 tracks.

- Black hole events should have a relatively high multiplicity of high energy particles, and consequently many tracks in the events.
- Use the event track multiplicity to discriminate between signal-rich and background-rich regions.
- Perform a counting experiment in a pre-defined signal region.
- Use 1.3 fb⁻¹ of 2011 collision data.

.

Muon Distributions

Distributions for same-sign dimuon events before N_{track} cut

- Same-sign dimuons from uncorrelated decays W+iets, Z+iets, low p_T QCD.
- Same-sign dimuons from correlated decays $t\bar{t}$, bb
- In signal region, $t\bar{t}$ dominates, followed by μ +fake.

James Frost (University of Cambridge)

Track Multiplicity arXiv:1111.0080

- Use track multiplicity $(p_T > 10 \text{ GeV}, |\eta| < 2.4)$ to separate signal and background processes.
- Define signal region as $N_{\text{track}} >= 10.$
- Use lower multiplicity region to estimate and constrain backgrounds.

Background Estimation arXiv:1111.0080

- *tt* derived from Monte-Carlo
- μ+fake fake rate determined per track from W events in data, then applied to muon+track events to get dimuon estimate.
- $b\bar{b}$ estimated from data in background region and extrapolated into signal regime using N_{tracks}.

Process	Events
b/c	$0.77 \pm 0.77 (syst)$
$tar{t}$	$29.2 \pm 4.1(\text{syst}) \pm 1.1(\text{lumi})$
μ +fake	$25.6 \pm 0.3 (\text{stat}) \pm 5.2 (\text{syst})$
Other backgrounds	$0.25 \pm 0.11(syst)$
Predicted	$55.8 \pm 0.3(\text{stat}) \pm 6.7(\text{syst}) \pm 1.1(\text{lumi})$
Observed	60
Signal $M_{TH} = 4$ TeV	$72.1 \pm 4.5 (\text{syst})$

• No sign of a signal \rightarrow set limits on black hole models.

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

- Inevitably, limited data/background statistics in signal region
- Data agreement with the background estimate is good.

Model-dependent Limits

arXiv:1111.0080

 95% C.L. exclusions for non-rotating (left) and rotating (right) black hole models with 2 and 6 extra dimensions, using the CL_s prescription.

- Search undertaken for black holes in a dimuon final state
- Using track multiplicity to separate signal and background processes.
- No excess over Standard Model expectations observed in 1.3 fb⁻¹ of 2011 collision data.
- Exclusion limits placed in a plane of M_D and M_{TH} for black holes.

nac

Summary

- The LHC has performed superbly during 2011.
- Searches in both ATLAS and CMS for black hole signatures have found no excesses beyond the Standard Model so far in the first 1 fb⁻¹ of this data
- Many different search strategies and approaches to looking for black holes.
- Increasingly stringent limits are being placed upon the possible cross-section for these states.
- Exclusion bounds extend into the $M_{TH} = 3 5$ TeV range, depending upon the model parameters.
- However, these often assume the black disc cross-section and high multiplicity.
- Searches are beginning to have the power to cover these modelling/theoretical uncertainties more concretely.

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

BACKUP SLIDES

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

Friday 13th January 2012 46 / 51

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Monojet plus Missing Energy Final States (1) [ATLAS-CONF-2011-096]

- Search for events with large E_T^{miss} and exactly 1 high p_T jet
- Veto events with a reconstructed lepton (e or μ)
- Search dominated by Z/W+jets Standard Model Backgrounds
- 'high p_T ' search region shown below:
 - Jet $p_T > 250 \text{ GeV}$, $|\eta| < 2.0$, $E_T^{miss} > 220 \text{ GeV}$.
 - ▶ No second (third) jet above $p_T > 60$ (30) GeV, $\Delta \phi$ (*jet*, E_T^{miss}) < 0.5.

Monojet plus Missing Energy Final States (2) [ATLAS-CONF-2011-096]

- No excess observed
- Look to exclude ADD models and set limits on the (4+n) dimensional Planck scale, M_D:
 - ▶ n=2, M_D > 3.16 TeV.
 - ▶ n=4, M_D > 2.27 TeV
 - ▶ n=6, M_D > 1.99 TeV

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

48 / 51

Dijet Resonances (1) [arXiv:1108.6311]

• Anti-K_{\perp} R = 0.6 jets.

- Select events with two high p_T jets with |y^{*}| < 0.6.
- Require highest jet $p_T > 180 \text{ GeV}$ $\rightarrow m_{jj} > 717 \text{ GeV}.$
- Compare data dijet mass distribution with a binned QCD background distribution, described by a smooth functional form.
- Search for resonances in the spectrum.
- Most significant discrepancy in blue - p-value of 0.62

Dijet Resonances (2) [arXiv:1108.6311]

James Frost (University of Cambridge)

BSM4LHC, IPPP, Durham

2010 results on quantum black holes

590