Searches for new physics in top quark final states

BSM4LHC Workshop, Durham, 13th January 2012

Francesco Spanò

Royal Holloway

ATLAS

http://atlas.ch

francesco.spano@cern.ch

Outline

• Why top quark ?

Top Quark at the LHC: tools of the trade

- New physics searches in top quark production
 - Resonances
 - ♦ tt+ET^{miss}
 - charge asymmetry
 - same sign tops
 - single top summary
- New physics searches in top quark decay
 FCNC in top decay
 status of top polarization

Mostly ATLAS results

> some CMS results

francesco.spano@cern.ch

Conclusions

) @ LHC: in the context

francesco.spano@cern.ch

(up)

ь

Sizeable data set (example form ATLAS)

7

31/10

Day in 2011

30/08

Backgrounds (di-lepton)

- "Fake" leptons from data
 - Get probability for loose "fake" and real leptons to be in signal region (A) ← control samples enriched with real (in Z window) or "fake" (low E^{miss}) leptons
 - Combine with N(di-lep) for all loose/tight pairs→fake tight (i.e. signal) lep

 Z/γ* bkg (ee, μμ): scale non-Z/γ*-bkgsubtracted data in Z-mass window control region with ratio of N(Z/γ*) in signal region to control region from simul.

Combined top pair cross section results

• Combined uncertainty is ~10% dominated by systematics. Comparable to theory do not include NEW + out of table results

▶ ATLAS: 176±5⁺¹³-10+7 pb
 ▶ CMS : 154±10⁺¹⁷-17+6 pb
 top mass (GeV)
 (stat+sys)
 ATLAS-CONF-2011-120
 CMS-PAS-TOP-10-009
 175.9±0.9±2.7
 173.4±1.9±2.7
 BSM4LHC

Search for excess in $t\bar{t}$ production vs $M_{t\bar{t}}$ -single lepton

BSM4LHC

15

francesco.spano@cern.ch

Search for excess in the production vs $M_{t\bar{t}}$ - fully hadronic

 $\int Ldt = \sim 0.89 \text{ fb}^{-1}$ (2011)

- M_{tt}: sum top jets in "1+1", sum top jet, Wjet and closest jet in "1+2"
 - QCD: sum tag(s) & probe jet, random m_{probe} around m_{top}
- No excess found→95% Bayesian credible interval for Z'/RS KKGluon σ*BR including systematics as integrated nuisance pars.
- Sub-pb limit on Z' σ*BR
- exclude 1 TeV<mккGluon<1.5 TeV @ 95%CL

ATLAS Preliminary

0.8

1.0

BSM4LHC

1.2

1.4

1.6 m_{g_{ĸκ}}[TeV]

17

0.6

0.4

	$g_{qqg_{KK}}/g_s$	$_{Aqg_{KK}}/g_s$ Expected					
default —	► -0.20	0.80	0.84				
	-0.25	0.88	0.88				
	-0.30	0.95	0.92				
	-0.35	1.02	0.96				

francesco.spano@cern.ch

Top Charge Asymmetry measurement

- In pp/pp→tt t/anti-t have different differential distributions from 0)-pQCD. NLO effect in qq /qg→tt/ttq: interference of ampHtudes 0)that are *relatively odd* under t \Leftrightarrow anti-t exchange.
- At Tevatron (qq~85%) manifests as FB asymmetry in lab.
- Observe discrepancies with SM (i.e. A_{FB} $A_{FB} = \frac{N(\Delta Y > 0) - N(\Delta Y < 0)}{N(\Delta Y > 0) + N(\Delta Y < 0)}$ $(CDF) \sim 3.4\sigma SM$ for $m_{tt} > 450 GeV$ Interference of SM gluon with new phys?

Tevatron

top

anti-top

Top Charge Asymmetry measure

- Trigger on high p_T singl[®] lepton (e,μ)
- 1 high p_T single lepton (^e,μ), ≥4 high p_T jets
- high E_T^{miss} and large transverse leptonic W mass (M_T^W) * to reduce QC₃D b₂kg
 - *E*_T^{miss} > 35 (25) GeV for e (μ) chan
 - *M_T^W* > 25 GeV (60GeV *E_T^{miss}*) for e (μ) chan
- Data-driven QCD (matrix method), W+jets normalization (from W asymmetry meas.)

- Subtract bkg and unfold $dN/d\Delta|Y|$ for the second det effects (iterative bayesian) \rightarrow derive A_{C}
- Combine e and µ chan with weight to write the weight to write average including syst and correlations 2500 vrite correlations

 $A_{\rm C} = -0.024 \pm 0.016 \, (\text{stat})^{-3} \pm 0.023 \, (\text{syst})$

consistent with SM, main accepp syst: generator, pshowerfrancesco.spano@cern.chTop Quage k production @ LHC

no bkg

subtraction

 $|A_{\rm C} = -0.028 \pm 0.019 \,(\text{stat.}) \pm 0.022 \,(\text{syst.})$

BSM4LHC

800

600

400

200

400

Uncertainty

|Y_t|-|Y_t

µ+jets

Uncertainty

Search for FCNC-induced same sign top pair production

arxiv:1106.21421 $\int Ldt = 35 \text{ pb}^{-1} (2010)$ CMS $L_{int} = 35 \text{ pb}^{-1}, \sqrt{s} = 7 \text{ TeV}$ • **2** positive isolated leptons, ≥ 2 jets with $p_T > 20$ GeV, large 4.5 ET^{miss} >20 (30) GeV. Also check with negative lepton pair. 3.5 3 2.5 Data driven dominant single **CMS** lepton ttbar bkg with one fake 2 1.5 1σ consistent with A_{EB} , Berger et al. **lep** from control sample with loose 2σ consistent with A_{EB}, Berger et al. lepton isolation & ID 0.5 Combined Observed Limit tt + ttj 600 800 1000 1200 1400 1600 1800 200 • No excess over $bkg \rightarrow 95\%$ CL $m_{7'}$ (GeV) **Bayesian limits** systematics as lognormal nuisance pars, cross check with CLs, For $M_{7'} = 2$ TeV on σ (tt+ttj) as function of r.h. get limit on coupling f_R and $M_{Z'} \rightarrow Disfavour$ contact interactions preferred region from Tevatron **AFB** measurement $\frac{C_{RR}}{\Lambda^2}$ < 2.7 TeV⁻²

Single top status

• Have 95% CL obs (exp) upper limit $\sigma(pp \rightarrow Wt + X) < 39$ (41) pb

• Have 95% CL obs (exp) upper limit σ_t (s-channel) < 26.5 (20.5) b No deviation from SM observed

francesco.spano@cern.ch

Top decay as a window on new physics

francesco.spano@cern.ch

Some words on prospects (personal view)

 Expect higher statistic searches to extend limits in the TeV/ sub pb region

- boosted top regime will use new tagging/reconstruction techniques, associated syst uncertainties
- consider jet triggers for boosted regime
- pile-up understanding for standard and "fat jets"
- Go for precision realm in tt cross section + observe single top beyond t channel. Measurements are mostly systematics dominated (that's where the work is).

• Go for differential xsec measurements (d σ /dm_{tt}, d σ /dp_{T,tt}, d σ /dp_{T,top}, d σ /dy_{tt}) test SM and complement direct searches

Conclusions

- Top analysis is in full swing thanks to the combined performance of LHC & detectors: a very rich program is already underway.
- The rapidly increasing data-set and detector understanding is quickly opening unprecedented phase space for new physics searches linked to both top production and decay ranging from resonances to dark matter candidates
- Present measurements do not show deviations form the standard model.
- Analysis of full 2011 dataset is in process. Expect new results in coming months. Eagerly await more luminosity in 2012.

$Q_4 \rightarrow Wq^+ \text{ CONF-2011-106}$

Search for 4th generation quarks

 $\int Ldt = 35 \text{ pb}^{-1} (2010)$

 Approximate mass reco in collinear assumption

- Binned max Ikl Fit of data ->sigma and shape
- No excess over bkg → 95%CL limit set with Neyman construction a la Feldman-Cousins: m_{Q4} >270 GeV

Selection of 1 in 10,000,000,000,000

delivered integrated luminosity~50 pb⁻¹

: a *Top* producer proton bunches colliding at center of mass = 7 TeV in 27 Km tunnel

ventually: E_{CM}=14TeV (7 TeV per beam, design value) 2011 Ecm=7 TeV Plans Achievement

 Image: second second

2012: run, parameters depend on 2011 perf. design lumi 10³⁴cm² s⁻¹

-30 times Tevatron pp collider)

 $N_{events}(\Delta t) = \int Ldt * cross section$

Simulation SM Monte Carlo used in top analyses Generation A=ATLAS, C=CMS

• Top quark : MC@NLO (A), MADGRAPH(C)

- xsec is normalized to NNLO from HATHOR
- variations with ACER (A), POWHEG(A,C)
- tau decays with TAUOLA

• Single top : MC@NLO(A), MADGRAPH (C)

Simulation for pile-up mostly included (from zero to 8 events on av (A))

- t, Wt and s channels
- normalized to NNLO, remove Wt overlaps with tt final state
- Z/gamma+jets : PYTHIA (A) for Z_tautau, ALPGEN (A) for Z to ee and Z to mumu NLO factor of 1.25, MADGRAPH(@) we

Z+cc,Z+bb

- **Di-boson** : *WW, WZ,ZZ:* ALPGEN normalized to MC@NLO, HERWIG normalized to NLO from MCFM (A); *W*[±]*W*[±]*,ttW* with MADGRAPH (A),
- W+jets: ALPGEN (A), MADGRAPH(C)
- ▶ W+n light partons (exclusive MLM for n,4, inclusive for n=5) W+bb, W+cc, W+c Hadronization
- HERWIG + JIMMY for underlying event for xsec(A), PYTHIA for di-boson, PYTHIA(C)
- Detector • GEANT4

francesco.spano@cern.ch

Simulation BSM Monte Carlo used in top analyses (II) Generation A=ATLAS, C=CMS

FCNC production (u→tZ'): PROTOS

xsec is normalized to NNLO

FCNC decay (t→uZ) decay: TopReX

t, Wt and s channels

Simulation for pile-up mostly included (from zero to 8 events on av (A))

- normalized to MC@NLO, remove Wt overlaps with tt final state
- Z/gamma+jets : PYTHIA (A) for Z_tautau, ALPGEN (A) for Z to ee and Z to mumu NLO factor of 1.25, MADGRAPH(C)
- **Di-boson** : *WW, ZZ:* HERWIG (A) normalized to NLO from MCFM; *W*[±]*,ttW* with MADGRAPH (A), PTHIA(C)

• W+jets: ALPGEN (A), MADGRAPH(C)

▶ W+n light partons, W+bb, W+cc, W+c

Hadronization

• PYTHIA

Detector • GEANT4

francesco.spano@cern.ch

ATLAS & CMS: Top observers

ATLAS 25 M M M M M M M M M M M M M M M M M M	<complex-block></complex-block>	3 (ATLAS) or 2(CMS) trigger levels for event selection
	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel 1 T endcap)	4 T solenoid + return yoke
Tracker	Si pixels, strips + TRT	Si pixels, strips
	$\sigma/p_{T} \approx 5 \times 10^{-4} p_{T} + 0.01$	$\sigma/p_{T} \approx 1.5 \times 10^{-4} p_{T} + 0.005$
EM calorimeter	Pb+LAr	PbWO4 crystals
	σ/E ≈ 10%/√E + 0.007	σ/E ≈ 2-5%/√E + 0.005
Hadronic calorimeter	Fe+scint. / Cu+LAr/W+LAr (10λ)	Cu+scintillator (5.8 λ + catcher)/Fe+quartz fibres
	$\sigma/E \approx 50\%/VE + 0.03 \text{ GeV} (central)$	σ/E ≈ 100%/√E + 0.05 GeV
Muon	$\sigma/p_T \approx 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)	$\sigma/p_T \approx 1\%$ @ 50GeV to 5% @ 1TeV (ID+MS)
Trigger	L1 + RoI-based HLT (L2+EF)	L1+HLT (L2 + L3)
francesco.spano@cern.ch	Top Quark production @ LHC	BSM4LHC 34

Ingredients I : leptons

A=ATLAS,C=CMS

Electrons

 (A) E scale from data known at 0.3 to 1.6% up to 1 TeV (C) ECAL scale known at level of 0.6% to 1.5%

A=|η_{cluster}|∉ [1.37,1,52]

* C= $|\eta_{cluster}| \notin [1.44, 1, 57]$

Events /

- isolated central*combination of shower shape, track/calo-cluster match (correct for Bremsstrahlung, veto conversions)
 - ▶ |η_{cluster}|<2.4 (A) or 2.5(C), p_T>25(A) or 30(C) GeV
 - remove duplicate close-by (ΔR< 0.2) jets
 (A) or reco objects (with Particle Flow(PF))

• Muons

>p⊤ scale known at ≈<1%</p>

isolated central combined fitted track from primary vertex

♦ |η_{track}|<2.5 (A) <2.1(C), p_T>20 GeV

***suppress heavy flavour decays**: no μ with $\Delta R < 0.4$ (A) or 0.3 (C) from a jet

scale factors to correct small data/MC mismatch

francesco.spano@cern.ch

Top Quark production @ LHC

BSM4LHC

35

Ingredients II : jets

- •**Reco**: particle flow objects (C) or 3d calo clusters(A) \rightarrow anti-k_T algorithm (R=0.4(A), 0.5(C))
- p_T > 25(A) or 30(C) GeV
- $|\eta_{\text{jet}}| < 2.4$ (A) or 2.5 (C)
- Calibrate jet energy scale with (η,p_T) dependent weight from simulated "true" jet kinematics+ pile-up offset correction
 - Scale uncertainty: between 2% to 8% in **p**_T and η
 - Contributions from physics modelling, calo response, det simulation
 - in-situ validation

Ingredients III: missing transverse energy (ET^m

• Negative vector sum of

- A: energy in calorimeter cells, projected in transverse plane associated with high p_T object + µ mom. + dead material loss
- C: energy/momentum from 1) PF particle flow objects or 2) Calo towers + μ or 3) TC: Track +Calo, no double counting

projected in transverse plane

- Cells/towers/tracks are calibrated according to association to high p_T object (electron, photon,tau, jet, muon)
- Calo cells with overlapping association are counted once

Ingredients IV : enter b-jets Displaced A=ATLAS, C=CMS Tracks

B-hadrons~ long lifetime ~observable flight (few mm)

data 2011

100 150 200 250 300 350

optional muon from semi-leptonic b decay

Primary Vertex

 d_0/σ_{d_0} $L_{3D}/\sigma_{L_{3D}}$

• A: (1) jet prob from track impact parameter (IP) (2) **3D decay length** significance of sec. vertex (SV) (3) Neural net with 1), 2) + mass of SV tracks + N_{2track} vertices+ E_{SV}(tracks)/E_{PV}(tracks)

Tagging

- C:(1) 3D SV decay length significance (& $N_{tracks} > 3$) (2) track IP signif. $\& \ge 2$ or 3_{ϱ} high IP signif. tracks Performance
- Efficiency: fit fraction of b-jets in sample with muons in jets, count # b-tagged
- Mis-tag rate: from SV properties (invariant mass of tracks (A), rate of negative decay lengthed/simulation & impact par significance (A,C)

Top Quark production @ LHC

0.06 Efficiency/mis-tag : from 80%/10% (track based) to **40%/0.1%** (SV based) 0.03 p_T dependent scale factors to correct $MC_{\mathfrak{s}}^{\mathfrak{s}}$ 0.01

francesco.spano@cern.ch

Boosted top ingredients in ATLAS

oduction vs $M_{t\bar{t}}$: towards

ATL-CONF-2011-087

semi-leptonic di-top-jet candidate

Towards boosted tops: understand "fat" jet substructure The hadronic leg ATL-CONF-2011-07

Where to from here? Towards new territory...

francesco.spano@cern.ch

boosted

Prospects:reconstructing had boosted top jets

Split and filter procedure for Cambridge -Aachen jets

- 1) Undo last clusterig step : get two subjets j_1 and j_2
- 2) If the splitting is such that
 - most massive sub-jet has small mass compared to parent jet :m<mu large mass drop
 - indication of hard interaction
 - symmetry in distance variable
 - opposite to QCD behaviour: peaked to low z i.e. y due to gluon splitting
- go to step 4)
- 3) Redefine jet as the starting jet for un-clustering
 - because one considers that j2 is just a soft jet from QCD
- 4) Re-cluster constituents of parent jet j with CA with R=min (0.3, dRj1,j2/2)
- 5) Re-define the jet as the sum of at least 3 of the new subjets $j = \sum_{i=1}^{\min(n,3)} s_i$.

$$y_2 = \frac{\min(p_{ij1}^2, p_{ij2}^2)}{m_j^2} \delta R_{j1,j2}^2 \qquad \delta R_{j1,j2} = \sqrt{\delta y_{j1,j2}^2 + \delta \phi_{j1,j2}^2}.$$

Top Quark production @ LHC

BSM4LHC

Searches for new phenomena with top: Results

Compare data to Standard Model prediction. No excess found.

¹⁵⁰⁰ 2000 2500 3000 ti mass production vs Mtt:towards boosted

MC expectation

Tag top jets Understand substructure of large cone (fat) jets

Top cross sections in ATLAS/CMS

francesco.spano@cern.ch

Top Quark with ATLAS @ LHC

Top Mini Workshop - Weizmann Institute - 30th May 2011 47

Selecting top pairs - single lepton

- Trigger on high p_T single lepton
 (e,μ)
- Good collision and no jet from noise/ out-of-time activity
- ≥ 1 high p_T central lepton, reject dileptons
 - A: exactly one lepton
 - C: ≥ 1 electron, reject if |m(ee) -M_Z| <15 GeV for any ee pair, no lower p_T µ OR only one µ, no lower E_T e
- ≥ 3 central high p⊤ jets
 - A: high E_T^{miss} and large transverse leptonic W mass (M_T^W) * to reduce QCD bkg
 - E_T^{miss} > 35 (25) GeV for e (µ) chan
 - $M_T^W > 25 \text{ GeV}$ (60GeV E_T^{miss}) for e (µ) chan

Backgrounds estimates - single lepton

A=ATLAS, C=CMS

Cross section - single I

- Build discriminant from s
 bkg templates of
 - A: lepton η, p_T of highest p_T jet aplanarity (←top is more spherical), H_{T,3p}, ratio of transverse to longitudinal activity (←top is more transverse)
 - C: E_T^{miss} for 3-jet bin (v: M3 for ≥ 4-jet bin, mass i system with highest vector combined p_T
- Extract σ_{tt},σ_{bkg} by binned likelihood fit of discrimina data in A: 3, 4 and ≥ 5-jet C: 3 and ≥4-jet bins

VC / data

MC / data

Cross section and syst. uncertainties - single lepton

100

- most syst uncertainties part of lkl fit as Gaussian nuisance parameters → reduction in JES,ISR/FSR (20% to 70% of initial value)
- still syst-dominated: generator ~3% lepton scale~2%
- δσ/σ=6.6% (stat~0.5%, sys~5%)

- •syst included in pseudo exp to derive Neyman CL belt for max lkl fit
- syst-dominated (JES~18%, factorization scales~7%)
- δσ/σ~23% (stat~8%, sys~21%)

Ingredients IV : enter b-jets Displaced A=ATLAS, C=CMS Tracks

B-hadrons~ long lifetime ~observable flight (few mm)

100 150 200 250 300 350

optional muon from semi-leptonic b decay

Primary Vertex

 d_0/σ_{d_0} $L_{3D}/\sigma_{L_{3D}}$

• A: (1) jet prob from track impact parameter (IP) (2) **3D decay length** significance of sec. vertex (SV) (3) Neural net with 1), 2) + mass of SV tracks + N_{2track} vertices+ E_{SV}(tracks)/E_{PV}(tracks)

Tagging

- C:(1) 3D SV decay length significance (& $N_{tracks} > 3$ (2) track IP signif. $\& \ge 2$ or 3 high IP signif. tracks Performance
- Efficiency: fit fraction of b-jets in sample with muons in jets, count # b-tagged
- Mis-tag rate: from SV properties (invariant mass of tracks (A), rate of negative decay lengthed/simulation & impact par significance (A,C)

Top Quark production @ LHC

0.06 Efficiency/mis-tag : from 80%/10% (track based) to **40%/0.1%** (SV based) 0.03 p_T dependent scale factors to correct $MC_{\mathfrak{s}}^{\mathfrak{s}}$ 0.01

francesco.spano@cern.ch

Selecting top pairs : di-lepton

- Vertex and quality cuts
- After single (A,C) lepton and di-el (C) trigger (A), exactly (A) or at least (C) two opposite sign high p_T central leptons (ee, eµ, µµ)
- ≥ 2 central high p⊤ jet
- High E_T^{miss} for (ee, μμ) (at least >30 GeV) or transverse activity (eμ)

• $H_T = \sum_{jets, lepts} |p_T|$ (A) or $\sum_{lept} transv. mass(C)$

- for (ee, μμ) veto low di-lep mass (<15(A),12(C) GeV) & Z-like(mass window) events
- if \geq **1 b-tag**, relax E_T^{miss}

A=ATLAS, C=CMS

- enriched with real (in Z window) or "fake" (low Er^{miss}) leptons (A), multi-jet single loose lepton sample (C)
- Combine with N(di-lep) for all loose/tight pairs (A) or only loose pair (fail tight) (C)→fake tight (i.e. signal) lep
- Z/γ^* bkg (ee, $\mu\mu$) : scale non- Z/γ^* -bkg-subtracted data in Z-mass window control region with ratio of N(Z/ γ^*) in signal region to control region from simul. >1-htan

	ee (A)	ee(C)	μμ(Α)	μμ(C)	eµ(A)	eµ(C)							
tt	167	427	314	559	666	1487							
B <mark>kg</mark>	25	78	45	100	68	141							
Tot Exp	192	505	359	659	734	1628							
Data	202	589	349	688	823	1742							

Di-lepton results

Include estimated background

Cross section from likelihood fit combining channels and including systematics as nuisance parameters

A=ATLAS, C=CMS

Di-lepton: $\mu + \tau$ ($\tau \rightarrow had$) channel

Check universality + sensitivity to $t \rightarrow H^{\pm} + b \rightarrow \tau \nu b$

• One central high $p_T \mu$, no low p_T (C) el

- ≥1 jet-seeded τ candidate (←cut-based algo on particle flow objects (C) or Boosted Decision Tree (BDT) (A)) with opposite charge to μ (OS)
- ≥ 2 jets & ≥ 1 b-tag
- large E_T^{miss} >40 (C) or 30 (A) GeV & H_T>200 GeV (A)
- Data-driven dominant tt & W+jets (enriched low N_{jet} region (A), weight $W+\geq$ *3jet with jet fake prob. from average of W* $+\geq 1$ jet & QCD enriched (C), **QCD** (non-iso mu sample normalized to low E_T^{miss})
- $\sigma_{tt} = N_{\mu+\tau} / A^*Lumi$. $N_{\mu+\tau}$ from
 - C: bkg-subtracted data
 - A: template lkl fit of difference of **BDT** in OS & SS samples (cancel most gluon & b-jet fakes)

francesco.spano@cern.ch

Top Quark production @ LHC

A=ATLAS, C=CMS

 $Ldt = ~1.08 \text{ fb}^{-1} (A, C) (2011)$ ATL-CONF-2011-1

BSM4LHC

57

Α

Fully hadronic channel

- ≥ 4 jet trigger, good jets
- \geq 6 high p_T jets, \geq 2 b-tags
 - 4 jets with p_T ≥ 60 GeV (A,C), 5th (6th) jet p_T ≥ 50 (40) GeV (C)
- **A**: no e or μ , small $E_T^{miss}/\sqrt{E_T^{calo} \& large H_T} > 300 GeV$
- Reconstruct with χ^2 kine fit
- Data-driven QCD bkg: weight control samples >=6 jets no b-tag (C) or 6,5 jets(A) with data driven b-tag prob
- N_{tt} from IkI fit to top mass (C) checked by neural network discr. or $\chi^2(A) \rightarrow \sigma = N_{tt}/A^*Lumi$

Systematics from pseudo exp. (dominated by b-tag, jet scale, bkg norm)

syst dominated!

$$Lot = 35 \text{ pb}^{-1} (A) (2010), \ \sim 1.0 \text{ fb}^{-1} (C) (2011)$$

BSM4LHC

58

Data Driven estimate of Non-Z bkg - di-lepton

francesco.spano@cern.ch

Top Quark con ATLAS @ LHC

Seminario INFN/Università``dì Bologna - 15 Giugno 2011 65

Top spin correlation

• Top quark decays before hadronization: $1/\Gamma_{top} < 1$ fm \rightarrow top polarization preserved in angular distrib of decay products

massless fermions: fixed helicity=chirality QCD conserves chirality

if m -> 0 chirality -> helicity = projection of spin along direction of motion

francesco.spano@cern.ch

0000

dominant at Tevatron

q

dominant at LHC Top Quark @ LHC

spins along given axis

opposite helicity

2L+1S

