

# Searches for Long Lived Particles with CMS

## Jim Brooke

BSM 4 LHC - IPPP Durham - Jan 2012



# Searches for Long Lived Particles at CMS

CMS

- Heavy stable charged particles
  - Look for highly ionising tracks
  - Also use time-of-flight measured in muon system
- Stopped particles
  - Particles stopped in detector that decay later
  - Search for out of time decays in calorimeters

## Displaced vertices

- Long lived neutral decaying to pairs of leptons
- Look for high impact parameter tracks, and displaced vertices

## Displaced photons

- Long lived neutral decaying to photons
- Use time of flight, shower shape, or **converted photons with high impact parameter**
- ▶ Results presented here use 1-2 fb<sup>-1</sup> from the 2011 dataset

# Heavy Stable Charged Particles : Selection



- Search for heavy, stable, charged particle
  - High momentum, but slow moving and highly ionising
  - Gluino and stop R-hadrons, and long-lived stau in GMSB
- Looking for tracks with high pt, high dE/dx, large time-of-flight
  - Measure time of flight in muon system
- R-hadrons may change flavour/charge during nuclear interactions with matter
  - Therefore perform searches for tracks both with and without muon TOF
  - Use muon and MET triggers to cover both scenarios



# **HSCP : Mass Reconstruction**



0.5

1.5

1

2

2.5

m (GeV/c<sup>2</sup>)

0

Jim Brooke (Univ. of Bristol) - LPCC 12<sup>th</sup> April 2011

# HSCP : Background

CMS

- Select candidate tracks using pt, dE/dx, (TOF), mass
  - Optimised for each signal MC point
- Background estimated using a data-driven method
  - ABCD technique, extended to 3 variables for Track+TOF analysis
  - Good agreement with observation in a loose selection, shown below



Jim Brooke (Univ. of Bristol)

# HSCP : Results



- No significant excess observed for any signal point
  - Place limits on production cross-section for gluino, stop and stau
- Different models of R-hadron interactions
  - Cloud model Eur. Phys. J. C50 (2007) 353
  - "Charge suppressed" model neutral R-hadrons remain neutral
- Initial fraction of gg free parameter of the theory
  - Gluino limit presented for 10% and 50%



# **Stopped Particles**

CMS

- Complementary search to the previous analysis
  - If a highly ionising particle loses sufficient energy while traversing the detector, it may come to rest
  - Then decay some time later
- Search for these decays during periods when no collisions are expected
  - Minimising backgrounds
- Observation would allow measurement of lifetime





somewhere in CMS

# **Stopped Particles : Analysis**

- CMS
- Use a dedicated jet trigger with "no bunch" condition from beam position monitors
- Backgrounds from instrumental effects, beam backgrounds and cosmic rays
  - Reject using cosmic and beam halo ID, jet topology and calorimeter pulse shape cuts
  - Reduce event rate to O(10<sup>-5</sup> Hz)
  - Observe constant rate since ~September 2010

## Time profile analysis

- Event time for signal has distinctive shape
- Background is flat in time
- Use signal and background event time PDFs to estimate S and B contributions



## **Counting Experiment**

- Estimate background rate from data taken in late 2010
- Perform counting experiment in bins of lifetime
- For small τ, select events in a window ~1.3 τ after each collision, to avoid integrating excess background
- Use a toy MC to calculate the effective luminosity for each lifetime bin

# **Stopped Particles : Results**



- Model independent result
  - No assumption made about model of interactions with matter
- τ < few 100 ns</p>
  - Decays occur during vetoed BXs
- τ < T<sub>orbit</sub> (~10<sup>-4</sup> s)
  - Decays occur within the orbit, but we optimise the time window
- T<sub>orbit</sub> < τ < T<sub>fill</sub> (~10<sup>4</sup> s)
  - Accept events over the full orbit - sensitivity plateau
- $\tau > T_{fill}$ 
  - Lose sensitivity as increasing fraction of decays occur postfill

Model Independent Cross-section [pb] CMS Preliminary 2011 10  $\int L dt = 886 \text{ pb}^{-1}$ 95% C.L. Limits: ----- Gluino :  $m_{\tilde{g}}$ =500 GeV/c<sup>2</sup>,  $m_{\tilde{\chi}^0}$ =400 GeV/c<sup>2</sup>  $L_{inst}^{max} = 1.3 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$  $\sqrt{s} = 7 \text{ TeV}$ 1 10<sup>-1</sup>  $10^{-7} \ 10^{-6} \ 10^{5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$ 1 10  $10^2$   $10^3$   $10^4$   $10^5$   $10^6$ 

Steps occur between timewindows as N<sub>obs</sub> increments for each observed event

## Cross-section × BR × stopping probability

 $\tau_{HSCP} [S]$ 

# **Stopped Particles : Results**

- Place limits on production cross-section × branching fraction
  - Take stopping probability from MC
  - For cloud model, and EM interactions only
- Place limits on gluino and stop
  - Assume  $\tilde{g} \rightarrow g \tilde{\chi}^0$  and  $\tilde{t} \rightarrow t \tilde{\chi}^0$  with fixed mass difference between  $\tilde{g}/\tilde{t}$  and  $\tilde{\chi}^0$



# **Stopped Particles : Results**

- Present limits as function of gluino/stop mass
  - For the "plateau" in lifetime limit
- Stopping probability and trigger/reco efficiency is roughly flat
- Place lower limits on mass for lifetimes between 10µs and 1000s
  - ▶ m<sub>g</sub> > 601 GeV/c<sup>2</sup>
  - ▶ m<sub>t</sub> > 337 GeV/c<sup>2</sup>





# **Displaced Leptons**



- Search for neutral objects decaying to electron/muon pairs
- Consider a simple case :  $H^0 \rightarrow 2X, X \rightarrow \ell^+ \ell^-$ 
  - Where X is a spin-0 long-lived particle
- Find tracks with large transverse impact parameter
  - Using an iterative tracking procedure
  - Prompt tracks first, remove used hits and work outwards
- Associate displaced tracks with a muon/electron trigger
  - Require moderate  $p_t$  (38/25 GeV for  $e/\mu$ ) and isolation
  - Reject prompt tracks by cutting on *transverse impact parameter significance*

### Identify X candidates

- Fit all oppositely charged, like flavour, track pairs to common vertex
- Require vertex well displaced from beam line (cut on *decay length significance, L\_{XY}/\sigma*)
- Apply topological cuts to reject cosmic and prompt backgrounds
- Search for resonances in invariant mass spectrum of X candidates

# Displaced Leptons : Tracking Efficiency





# **Displaced Leptons : Analysis**





# **Displaced Leptons : Results**

Finally, present limits for a range of m<sub>H</sub>, m<sub>X</sub>



Jim Brooke (Univ. of Bristol)

CMS

# **Displaced Photons**

- Search for long lived particle decaying to photons
- ► Motivated by GMSB : long-lived  $\chi_0 \rightarrow \gamma + G$
- Can use time-of-flight, photon shower shape
- Here, use converted photons
  - Require 2 photons (> 45 GeV) + 2 jets (> 80/50 GeV)
  - Reconstruct photon impact parameter d<sub>XY</sub> using conversion tracks









# **Displaced Photons : Result**



Neutralino lifetime [cm]

Number of Events

# Summary & Conclusions

- Currently employ a range of methods to search for long lived particles
  - Highly ionising tracks
  - Late arriving muons
  - Decays of stopped particles
  - Track pairs with displaced vertices
  - High impact parameter photons
- ▶ 5 fb<sup>-1</sup> updates on all these coming soon
- But we still a wide range of signature space to explore
  - Displaced vertices with other decay modes qq, bb, ττ, ... combinations
  - Charged particles that decay in the detector kinked tracks etc.
  - Trackless jets
  - Fractionally/multiply charged particles
  - Monopoles
- Hope to start covering at least some of this with the 2012 data

