Searches for R-hadrons at ATLAS

David Milstead

Heavy exotic hadrons – why bother ?

New energy regime must be probed for new particles with various colours, spins, lifetime.

Hierarchy problem -> TeV solutions

Metastable coloured particles (Rhadrons) in many/most commonly studied BSM theories, eg Split-SUSY.

Focus on stable R-hadrons (ctau~detector)

Still lead to dark matter candidates.

SMP	LSP	Scenario	Conditions
$\tilde{\tau}_1$	$ ilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}}, \mu, \tan\beta,$ and $A_\tau)$ close to $\tilde{\chi}^0_1$ mass.
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.
		\tilde{g} MSB	No detailed phenomenology studies, see [23].
		SUGRA	Supergravity with a gravitino LSP, see [24].
	$ ilde{ au}_1$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $\tan\beta$ and/or very large A_{τ} .
		AMSB	Small m_0 , large $\tan \beta$.
		\tilde{g} MSB	Generic in minimal models.
$\tilde{\ell}_{i1}$	\tilde{G}	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP for small $\tan\beta$ and $\mu.$
	$\tilde{\tau}_1$	\tilde{g} MSB	\tilde{e}_1 and $\tilde{\mu}_1$ co-LSP and also SMP when stau mixing small.
$\tilde{\chi}_1^+$	$\tilde{\chi}_1^0$	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}.$ Very large $M_{1,2} \gtrsim 2 \text{ TeV} \gg \mu $ (Higgsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$, with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu .$ Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\rm GS} = -3.$
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.
$ ilde{g}$	$ ilde{\chi}_1^0$	MSSM	Very large $m_{ ilde{q}}^2 \gg M_3$, e.g. split SUSY.
	\tilde{G}	GMSB	SUSY GUT extensions [25-27].
	${ ilde g}$	MSSM	Very small $M_3 \ll M_{1,2},$ O-II models near $\delta_{\rm GS} = -3.$
		GMSB	SUSY GUT extensions [25-29].
\tilde{t}_1	$\tilde{\chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m_{\tilde{q}}^2$ and $M_3,$ small $\tan\beta,$ large $A_t.$
\tilde{b}_1			Small $m_{ ilde{q}}^2$ and M_3 , large $ an eta$ and/or large $A_b \gg A_t$.

Brief overview of possible SUSY SMP states considered in the literature. Classified by SMP, LSP, scenario, and typical conditions for this case to materialise in the given scenario. See text for details.

Previous searches for long-lived particles

Typically "generic" searches for longlived particles mostly sensitive to heavy lepton-like objects.

\sqrt{s} (GeV)	Collision	Experiment	Mass range (GeV)	Charge (e)	Cross-section limit (pb)	CL (%)	Ref.
1800	$p\bar{p}$	CDF	100-270	±1	0.3-2	95	[340]
1800	$p\bar{p}$	CDF	50-500	$\pm \frac{2}{3}$	10-100	95	[339]
				± 1	5-50		
				$\pm \frac{4}{3}$	5-70		
300	ep	H1	< 100	± 1	190	95	[275]
130-209	e^+e^-	OPAL	45-102	$\pm \frac{2}{3}$	0.005-0.02	95	[280, 319
			45-102	± 1	0.005-0.03		
			45-100	$\pm \frac{4}{3}$	0.005-0.02		
			45-98	$\pm \frac{5}{3}$	0.005-0.02		
189	e^+e^-	DELPHI	68-93	± 1	0.02-0.04	95	[292]
130-183	e^+e^-	DELPHI	2-91	± 1	0.05-0.3	95	[293]
130-183	e^+e^-	DELPHI	2-91	$\pm \frac{2}{3}$	0.04-0.6	95	[293]
130-172	e^+e^-	ALEPH	45-86	± 1	0.2-0.5	95	[276]
91.2	e^+e^-	ALEPH	5-45	$\pm \frac{1}{3}$	3 - 10	90	[279]
				$\pm \frac{2}{3}$	1 - 12		
			10-72	±1*	1.6 - 140		
				$\pm \frac{4}{3}$	1.4 - 4		
91.2	e^+e^-	OPAL	3-45	$\pm \frac{2}{3}$	0.2-1.0	90	[318]
				$\pm \frac{2}{3}^{*}$	0.15-0.9	95	
				$\pm 1^*$	0.15-3.0		
				$\pm \frac{4}{3}^{*}$	0.18-0.21		
				$\pm 2^*$	0.27-0.3		
91.2	e^+e^-	Kinoshita et al.	1-45	$\lesssim 240e $	70	95	[286]

Table 4

A summary of selected direct searches for electrically charged SMPs belonging to class 1. The searches are categorised according to centre-of-mass energy, colliding particles, and experiment. A range in cross-section limit is provided for an SMP with a given charge. The mass range corresponds to the region for which the upper cross-section limit is quoted. The limits were derived under the assumption of a pair-production mechanism, with the exception of those results marked with the symbol *. For these limits, a single SMP inclusive production mechanism was assumed. The confidence level to which the limits were extracted is also shown.

Special challenges for R-hadron searches

(1) Charge states

Mass hierarchy and charge composition of stable states Eg ~g-g state

R-hadron	PYTHIA	HERWIG
	Fraction	Fraction
	(%)	(%)
$R^+_{ar{g}u\overline{d}},R^{ar{g}d\overline{u}}$	34.2	28.2
$R^{0}_{\bar{g}u\overline{u}}, R^{0}_{\bar{g}d\overline{d}}$	34.2	28.2
$R^+_{ar{g}u\overline{s}}, R^{ar{g}s\overline{u}}$	9.7	17.5
$R^0_{ar{g}d\overline{s}},R^0_{ar{g}s\overline{d}},R^0_{ar{g}s\overline{s}}$	10.4	26.1
$R^0_{ar{g}g}$	9.9	_
$R^{++}_{\tilde{g}},R^{}_{\tilde{g}}$ (anti)baryons	0.1	_
$R^+_{ ilde{g}},R^{ ilde{g}}$ (anti)baryons	0.8	_
$R^0_{\tilde{g}}$ (anti)baryons	0.7	_

(2) Scattering in matterCharge exchangeDominant baryon production(hep-ex/0404001)Unknown x-sectionPheno models

Issues particularly acute for R-hadrons with colour octets

R-hadron hadronisation and scattering effects

Typically ~5 interactions in calorimeter LArge charge exchange effects

hep-ph/0908.1868

R-hadron search strategy at ATLAS

- A priori unknown fraction of charged R-hadrons will penetrate into muon system (expected large neutrals for sbottom, gluino)
- A prior unknown fraction of gluino R-hadrons will be produced with electric charge
- Consider muon-agnostic and muon-based searches

Muon agnostic search

 Data-driven bg estimates from dE/dx and Tilespeed spectra

Cut level	Data	Background	300 GeV \tilde{g}	500 GeV \tilde{g}	600 GeV \tilde{g}	200 GeV \tilde{t}	200 GeV \tilde{b}
No cuts	-	-	2.13×10^{3}	80.4	21.8	405	405
Trigger	-	-	616	25.6	6.96	109	108
Candidate	75466	68.0×10^{3}	416	17.6	4.80	87.4	67.9
Vertex	75461	68.0×10^{3}	416	17.6	4.80	87.4	67.9
$ \eta < 1.7$	64618	60.5×10^{3}	364	15.7	4.32	75.2	56.8
Track quality	59872	58.1×10^{3}	355	15.3	4.20	73.3	54.9
$\Delta R > 0.5$	49205	49.4×10^{3}	349	15.1	4.13	72.7	54.5
$p_{\rm T} > 50 { m GeV}$	5116	6.56×10^{3}	330	14.5	3.95	68.9	50.0
Mass preselection	36	56.0	184	9.70	2.75	32.6	18.9
Final selection	-	-	173	9.17	2.62	30.6	17.5

Muon-agnostic search

Sensitive to any production mechanism leading to charged R-hadrons after hadronisation

Muon-based R-hadron search

Muon-based R-hadron search

Sensitive to scenarios in which the R-hadron appears as charged after hadronic scattering even if it was produced as a neutral object.

Stopped gluinos

LLP can be stopped in dense calorimeter material by electromagnetic (and hadronic) interactions

Consider Split-SUSY, eg meta-stable gluino in R hadron.

Stopped gluinos

- 3 samples : bg (low inst lum.), control sample ,signal sample
- 31pb-1
- Beam, detector and DQ selections
- Muon veto and jet cleaning selections.
- 1 jet and > 1 jet samples (E_T > 50GeV)
- BG from cosmic muons, halo muons, calo noise.

Jet energy after all selections

Single jet energy

Leading jet energy (multijet sample)

Sensitivity to gluino masses in 300-400 GeV range.

Assuming the handle is turned with more data and no changes are made, we'll see R-hadrons IF they exist in nature at the TeV-scale AND

Hadronic scattering is very roughly as we expect it to be •AND

ctau ~>detector AND charged in muon chamber

•OR

ctau ~>detector AND charged in inner detector AND Jet/MET above certain thresholds

•OR

ctau ~> detector AND decays in a jetty way.

•OR

ctau << detector AND decays in a way to satisify standard SUSY/exotics searches

How could we miss seeing R-hadrons?

- Hadronic scattering is eccentric eg cross section ridiculously higher than expected
 - short, split tracks etc.
- R-hadron is dominantly neutral and associated jet/MET too low for high lumi triggers (assuming pair production). Missed by monojet + MET inclusive analyses.
- R-hadron has ctau>~detector size and decays in a way not expected in current "stopped searches"
- R-hadron has ctau<<detector size and decays in a way missed by other displaced vertex searches.
 - Trigger objects (associated production)

Summary

- ATLAS has a set of complementary search strategies for R-hadrons
- Guided by extreme cases of "what can happen" but results are largely independent of non-perturbative QCD phenomenology
- Searches for non-decaying and decaying Rhadrons
- Published mass limits up to ~600 GeV.