Searches for long-lived particles at the LHC

Philippe Mermod (University of Geneva) BSM 4 LHC UK Workshop Durham, 12 January 2012

Long-lived particles

New physics can be expected at the TeV scale

– Type of "new physics" unknown!

- **Reasons for long lifetimes (small couplings):**
- 1) When the undelying dynamics are well described
- Constrained decay phase space
 - Examples: muon (W mass >> mass diff), neutron (idem)
 - Putative examples: split-SUSY gluino (squark mass), hidden photon (mediator mass)
- 2) When the underlying dynamics are unknown
- Assume (approximatively) conserved quantum number
 - Examples: electron (electric charge), proton (baryon number), s quark (strangeness)
 - Putative examples: LSP (R-parity), monopole (magnetic charge) 2

Spin?

Mass?

Couplings?

- Lifetime?
- Decay topologies?

Colour charge? (see next talks)

Electric and magnetic charges?

New interaction?

The LHC experiments should not miss a detectable signal! But: limited resources and limited imagination. Invest in which signatures? → Generic (blue sky) vs. Specific (model-driven) dilemma

Long-lived particle direct detection – what can we possibly do?

- Search for displaced decay vertices
- Search for out-of-time decays of particles which stopped in a detector
- Track stable charged particles through a detector
- Remove detector parts and look for trapped stable particles, in particular magnetic monopoles

Overview of LHC direct long-lived particle searches performed to date

- ATLAS displaced jets in inner detector
- ATLAS displaced jets in muon system
- ATLAS disappearing tracks
- CMS displaced leptons → later talk
- CMS displaced photons → later talk
- ATLAS/CMS out-of-time decays → **later talks**
- ATLAS/CMS penetrating, charged, slow-moving particles → later talks
- ATLAS highly ionising

ATLAS displaced jets in inner detector (decay after up to 18 cm) arXiv:1109.2242 [hep-ex]

Signature: muon and secondary vertex from tracks, with large impact parameter, high track multiplicity, and high invariant mass

U

 $\widetilde{\chi}^{c}$

Intepreted in RPV SUSY scenario with non-zero $\lambda' \rightarrow L$ -violating

$$W_{\rm RPV} = \sum_{i} \mu_i L_i H_u + \sum_{i,j,k} \left(\frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c \right)$$

Displaced jets in inner detector – results

No events in signal region (tiny backgrounds after vetoing on material interactions)

Upper limits at 95% c.l. as function of proper decay length for different SUSY mass splitting scenarios

ATLAS displaced jets in muon system (4 to 7 m)

Signature: two highly-displaced vertices from muon hits, with calorimeter and inner track isolation

ATLAS displaced jets in muon system – preliminary results

0 observed, 0 expected from backgrounds Upper limits at 95% c.l. as function of proper decay length for different Higgs and hidden valley mass splitting scenarios

ATLAS disappearing tracks (70 to 90 cm)

Signature: events with jets and MET → search for tracks which leave no hits in the outer volume of the TRT

Intepreted in SUSY AMSB scenario with

- near degenerate chargino and neutralino (long-lived chargino)
- Dominant decay:

 $\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi^{\pm}$

Soft pion (not reconstructed) → disappearing track

ATLAS disappearing tracks – preliminary results

scenario

CMS-PAS-EXO-11-004

Signature: one or two displaced vertices from oppositely charged leptons (electrons or muons) Interpreted in a scenario with $H^{\circ} \rightarrow 2X \rightarrow l^{\dagger}l^{\dagger}l^{\dagger}l^{\dagger}$ (X long lived)

CMS-PAS-EXO-11-067

Signature: two photons, among which one is identified as displaced converted photon; and MET

Interpreted in GMSB scenario with long-lived neutralino decaying into photon and gravitino

Displaced decay searches: things that can be improved

- Difficult to be generic given the large number of possible scenarios, but we can try to cover as many as possible:
- Decay lengths ranging from mm to tens of meters
 - Use various detector component, specific triggers
- Minimise requirements on the rest of the events (additional muon, additional MET...)
 - If cannot trigger on displaced vertex itself, then use a combination of various triggers
- Systematic coverage of decay topologies
 - Hadrons, leptons, photons, invisible...
- Mass splittings range from hundreds of MeV to hundreds of GeV
 - e.g. need specific analyses for very collimated leptons or "lepton-jets" (high mediator mass, low long-lived particle mass)

Slow-moving particles (CMS + ATLAS: see next talks) arXiv:1101.1645 [hep-ex] arXiv:1103.1984 [hep-ex] arXiv:1106.4495 [hep-ex] arXiv:1011.5861 [hep-ex]

Penetrating signature: track with high p₁, time delay and anomalously large dE/dx

Decaying signature: energy deposition in calorimeter in events without collisions

Muon spectromete Calorimeter Inner detector

Slow particle stops in calorimeter

much later...

Penetrating signature: things that could also be covered

Searches are designed for |q| = 1e

- What about fractionally charged particles?
 - Degraded hit efficiency affects trigger and reconstruction
 - Anomalously <u>low</u> dE/dx
 - Dedicated searches needed!

• What about multiply charged particles?

- Lower apparent p₁ affects selection efficiency
- Detector effects of very high dE/dx need to be understood
- Dedicated searches needed!
- Above a certain charge, stop before or inside calorimeter
 bigbly ionicing particles (payt clide)
 - → highly ionising particles (next slide)

ATLAS highly ionising arXiv:1102.0459 [hep-ex]

Signature: electron candidate with very high-ionisation track and very narrow EM cluster

Intepreted as highly-charged longlived particle (6e < |q| < 17e) stopping in EM calorimeter

- Early search (summer 2010, 3.1 pb⁻¹)
- Blue sky search, motivated by detector capability rather than speculative theory

ATLAS highly ionising – results arXiv:1102.0459 [hep-ex]

Independent variables:

- fraction of TRT high-threshold hits on track
- lateral extent of EM calorimeter energy deposition in first and second layers

- 0 observed, 0 expected from backgrounds
- Cross section limits 6e ≤ |q| ≤ 17e and mass up to 1000 GeV
- Model-independent approach: fiducial kinematics

Highly ionising particles: things that can be improved

 Theoretical ATLAS acceptance for 7 TeV Drell-Yan pair production

- Magnetic monopoles are not covered yet at the LHC!
- A well-designed analysis can in principle cover a wide range of charges and masses
 19

Highly ionising particles: other approaches

Track-etch technique: MoEDAL experiment

 Look for etch-pit cones in plastic foils deployed around LHCb interaction point

• SQUID technique

 Look for persistent current induced by monopoles in detector and accelerator material, e.g. ATLAS and CMS beam pipes

Monopoles: potential reach

Contours for >5% acceptance

- Assuming Drell-Yan pair production
- Not taking detector efficiency into account
- Not weighted with luminosity

The different techniques are complementary!

Summary and outlook

- Decaying signatures:
 - Searched only a fraction of all possible scenarios, still a lot to be done
- Penetrating signatures:
 - Fractional and multiple charge particles still uncovered
- Highly ionising signatures:
 - Monopoles still uncovered, large potential at the LHC using various techniques

Extra slides

Displaced vertices – simulation vs. data

Loose selection for data/MC comparison

- Allow vertices with two tracks
- Low vertex mass (< 10 GeV)
- No material veto

→ excellent agreement in shape and yield

arXiv:1109.2242 [hep-ex]

Displaced jets in MS – vertex reconstruction

- A dedicated tracking and vertex reconstruction routine has been developed to identify displaced vertices in the MS
- Resolution of ~20 cm in z and ~32 cm is achieved

Disappearing tracks – selection

- Jet+MET trigger
- MET > 130 GeV
- 3 jets with $p_{_{T}}$ > 130, 60, 60 GeV and $|\eta|$ < 3.2
- Track with:
 - $p_{T} > 10 \text{ GeV}$ (highest)
 - Isolated
 - $|\eta| < 0.63$
 - N(PIX) ≥ 1
 - N(SCT) ≥ 6
 - N(TRT3) < 5

Number of hits in TRT outer module

Disappearing tracks – backgrounds

TRT

Pixel

SCT

high-p_T charged particle interacting with TRT material

> $low-p_T$ charged particle scattered in materials resulting in badly measured track p_T

> > reconstructed track true particle track

Disappearing tracks – results

- Background is estimated by fitting the region $10 < p_T < 50$ GeV with the background PDFs
 - Expected background with $p_T > 50$ GeV is 13 ± 1
 - Observed 5 events with pT > 50 GeV
- For the mAMSB point LL01 ($m_0 = 1.5$ TeV, $m_{3/2} = 32$ TeV, $m_{\chi^{\pm}} = 90.2$ GeV), χ^{\pm} lifetimes of $0.5 < \tau_{\chi^{\pm}} < 2$ ns are excluded at 95% CL

CMS-PAS-EXO-11-004

CMS-PAS-EXO-11-067

arXiv:1102.0459 [hep-ex]

ATLAS HIPs – selection

(applied to electron candidates with |η| < 1.35, E₋ > 15 GeV)

- Independent variables:
 - fraction of TRT highthreshold hits on track
 - lateral extent of EM calorimeter energy deposition in first and second layers
- Number of selected events in data: 0
- Data-driven background estimate: 0.019 ± 0.005

ATLAS highly ionising – modelindependent approach arXiv:1102.0459 [hep-ex]

Major source of inefficiency comes from acceptance (probability to punch through inner detector)

- Depends on mass, charge, and model of kinematics

ATLAS highly ionising – limits arXiv:1102.0459 [hep-ex]

• In fiducial ranges of (η, E_{kin}) (pb, 95% c.l.)

	q = 17e	q = 10e	q = 6e	<i>m</i> [GeV]
Model-	2.1	1.2	1.4	200
independent!	1.6	1.2	1.2	500
•	1.5	1.2	2.2	1000

• For Drell-Yan fermion pair production (pb, 95% c.l.)

<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e
200	11.5	5.9	9.1
500	7.2	4.3	5.3
1000	9.3	3.4	4.3

• First HIP search at LHC energies

HIP parameter space: current limitations

 $|\mathbf{q}| \ge 6e$ bound determined by E₁ > 10 GeV trigger threshold

> – electron trigger → HIP must stop in EM Cal

 |q| ≤ 17e bound determined by delta electrons and electron recombination

> no interpretation yet for monopoles for same reasons + bending

mass \leq 1000 GeV ($\beta \geq$ 0.4) bound determined by L1 trigger timing constraints

lifetime ≥ 100 ns to maintain narrow energy deposit

A few comments about "highly ionizing"

- R-hadrons ionize more than muons due to low speed
 - Up to 10 MIPs (β down to 0.4)
 - Generally penetrating through whole detector
- Monopoles/high-charges are very highly ionizing due to low speed and high charge (dE/dx α q²)
 - $>> 10 \text{ MIPs} \rightarrow \text{highly ionizing particle (HIP)}$
 - Generally stopping in detector
 - Specific detector effects e.g. saturation, anomalous bending, delta electrons, electron recombination...

Highly ionising particles: beam pipe stopping acceptance (SQUID analysis)

Monopole, beam pipe, 7 TeV

arXiv:1112.2999 [hep-ph]

Monopole, beam pipe, 7 TeV

SQUID tests at ETH Zurich

Quirks?! [Kang & Luty, arxiv:0805.4642]

- New confining gauge field, "infracolor," forms strings between massive stable particles, "quirks."
- Quirk mass larger than confinement scale prevents string from fragmenting as in QCD.
- String force of ~ Λ_{IC}² causes quirks to oscillate around center of mass, forming bizarre tracks
- Two important parameters:
 - Quirk mass m_a: considering 100 GeV 1 TeV range where discovery possible
 - Confinement scale Λ_{ic}: smaller than m_q; possible values range over many orders of magnitude
- Very long strings possible. Depends on Λ_{ic}, so strings could be subatomic or larger than detector.
- Assume quirks have electrical charge otherwise we can't see the tracks.

39

2

ATLAS subdetectors

- Long-lived particles often require non-standard reconstruction
- Timing is often an issue

Inner Detector (ID)

Muon Spectrometer (MuSp)

