## CP Violation in Hadronic Decays @ LHCb











- Operational performance in 2011
- CP violation in two-body hadronic charm decays
- CP violation in two-body hadronic beauty decays
- Look ahead: time dependent CP asymmetries





- Precision measurements of CP violation and rare decay
  - Indirect searches for physics beyond the standard model
  - Access to unprecedented statistics
  - Challenging at a hadron collider

#### $b\overline{b}$ cross sections any yields in the detector acceptance

|               | L (fb <sup>-1</sup> ) | $\sigma_{acc}(\mu b)$ | bb/10 <sup>9</sup> |                      |
|---------------|-----------------------|-----------------------|--------------------|----------------------|
| ATLAS/CMS     | 5.2                   | 75                    | 390                | PLB 694 (2010) 209-2 |
| LHCb          | 1.1                   | 75                    | 82                 |                      |
| CDF/D0        | 9.5                   | 2.8                   | 26                 |                      |
| Belle + BaBar | 832 + 426             | 0.0011                | 1.4                |                      |

Charm cross-section @ 7 TeV:  $\sigma_{acc}$  = 1.2 mb

LHCb-CONF-2010-013

 $\Rightarrow$  1.3 · 10<sup>12</sup>  $c\bar{c}$  pairs produced in the LHCb acceptance

8 Feb. 2012

L. Eklund



## **Operational performance 2011**



- Smooth operation high data quality
  - 1.22 /fb delivered, 1.107 /fb recorded (90.7 %)
    - NB: online calibrated luminosity
  - 99% flagged OK for offline
  - 1.025 /fb analysis grade data
    - NB: offline calibrated luminosity
- Velo Closing + start of run
  - < 1% data loss</p>



ntegrated Luminosity (1/fb) Delivered Lumi: 1.2195 /fb Recorded Lumi: 1.1067 /fb 0.8 0.6 0.4 0.2 1700 1900 1800 2000 2100 2200 LHC Fill Number

LHCb Integrated Luminosity at 3.5 TeV in 2011



## Operating conditions 2011



- LHCb design luminosity: 2 \* 10<sup>32</sup>
  - 2808 bunches,  $\mu$  =0.4, 14 TeV
- Operating conditions 2011: 1380 bunches, 7 TeV
  - Roughly half  $b\overline{b}$  cross section compared to 14 TeV



 $\mu$ : average number of interactions per bunch crossing



## Trigger Rates and Luminosity



- L0 Trigger: muons and calorimetry
  - Limited to 8-900 kHz
- Pushing the operational limit
  - Accept some dead time
- HLT: Full (online) reconstruction
  - B-physics 1 kHz
  - Charm 1 kHz
  - Other 1 kHz (E/W, di-muon, …)
- Luminosity Levelling
  - Displace beams to regulate the instantaneous luminosity



8 Feb. 2012





7

- Def: Observable not invariant under CP transformation
- Direct CP violation: difference in decay amplitude



- Indirect CP violation: only for neutral mesons
  - Mixing:  $P(M^0 \rightarrow \overline{M}) \neq P(\overline{M}^0 \rightarrow M^0)$
  - Interference between mixing and decay









# Charm





• Mixing in D<sup>0</sup> mesons experimentally established

$$x = \frac{\Delta m}{\Gamma} = 0.63 \pm \frac{+0.19}{-0.20}\%$$
  $y = \frac{\Delta\Gamma}{2\Gamma} = 0.75 \pm 0.12\%$ 

- CP violation is expected to be very small
  - 10<sup>-4</sup> 10<sup>-3</sup> in Standard Model
  - Could be enhanced up to 10<sup>-2</sup> in BSM theories
- Self-tagging decay mode

\*HFAG Average, CPV allowed

 $D^{*\pm}$ 

-----

 $\pi^{\pm}_{s}$ 





• The time-integrated CP asymmetry is defined as

$$A_{CP}(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}{}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}{}^0 \to \overline{f})},$$

• Measured quantity  $A_{\rm raw}(f) = A_{CP}(f) + A_{\rm D}(f) + A_{\rm D}(\pi_{\rm s}) + A_{\rm P}(D^{*+})$ 

Detection asymmetry P

**Production asymmetry** 

• Measure difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$



1.4 M K<sup>+</sup>K<sup>-</sup> candidates

• Results with 0.62 fb<sup>-1</sup> data

 $\Delta A_{CP} = 0.82 \pm 0.21 (stat) \pm 0.11 (syst) \%$ 

#### arXiv:1112.0938

- First evidence of CP violation in the charm sector
  - 3.5  $\sigma$  from zero





400 k  $\pi^+\pi^-$  candidates





- $\Delta A_{CP}$  is mainly a measure of direct CP violation
  - Indirect largely cancel in the difference

$$\Delta A_{CP} \equiv A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$$
(3)  
=  $\left[a_{CP}^{dir}(K^{-}K^{+}) - a_{CP}^{dir}(\pi^{-}\pi^{+})\right] + \frac{\Delta \langle t \rangle}{a_{CP}^{ind}}$ ,



![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_2.jpeg)

- Many other charm CPV observables accessible by LHCb
  - Two of them covered here

$$y_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1,$$

lifetime ratio: CP eigen-state & flavour specific

![](_page_12_Picture_7.jpeg)

Any deviation is a sign of CP violation

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-) - \hat{\Gamma}(\overline{D}{}^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^+ K^-) + \hat{\Gamma}(\overline{D}{}^0 \to K^+ K^-)}.$$

lifetime difference: Decays to CP eigen-state

$$A_{\Gamma} \approx -a_{CP}^{ind} - a_{CP}^{dir} \, y \cos \phi$$

M. Gersabeck et al. arXiv:1112.09384

Largely a measure of indirect CP violation

Orthogonal constraint to  $\Delta \mathbf{A}_{\text{CP}}$ 

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_2.jpeg)

- Measure lifetimes with un-binned ML fit
  - D<sup>0</sup>s from B-decays main experimental challenge
  - Lifetime acceptance bias determined from data
    - a.k.a swimming method
- Result from 2010 data (0.03 fb<sup>-1</sup>)

 $y_{CP} = (5.5 \pm 6.3 (stat) \pm 4.1 (syst)) \times 10^{-3}$ 

**Compatible with**  $y = \frac{\Delta\Gamma}{2\Gamma} = 0.75 \pm 0.12 \%$ 

 $A_{\Gamma} = (5.9 \pm 5.9 (stat) \pm 2.1 (syst)) \times 10^{-3}$ 

• Update with full 2011 data set for the winter conferences

IP & decay distributions for D<sup>0</sup> -> K<sup>+</sup> K<sup>-</sup>

![](_page_13_Figure_13.jpeg)

8 Feb. 2012

![](_page_14_Picture_0.jpeg)

## Direct vs. indirect CP violation

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

# Beauty

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_2.jpeg)

- $B_{(S)}^0$  meson decays into two charged charmless hadrons
  - Loop dominated decay: BSM sensitivity

![](_page_16_Figure_5.jpeg)

- Time integrated CP asymmetries
  - Flavour specific decay  $B^0_{(S)} \rightarrow K\pi$
  - No need to tag the initial flavour

$$A_{C\!P} = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$$

![](_page_17_Picture_0.jpeg)

## The raw $K\pi$ asymmetries

![](_page_17_Picture_2.jpeg)

![](_page_17_Figure_3.jpeg)

8 Feb. 2012

L. Eklund

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_2.jpeg)

• Similarly to the  $\Delta A_{CP}$  measurement

$$A_{CP} = A_{CP}^{raw} - A_D - \kappa \cdot A_P$$
  
*k* is a smearing factor from the oscillation
  
*k* between the oscillation
  
*k* b

L. Eklund

- Production asymmetry  $\sigma(B^0) \neq \sigma(\overline{B}^0)$ 
  - Washed out for  $B_s^0$  by the fast oscillations
  - Measured for  $B^0$  in  $B^0 \rightarrow J/\Psi K^{*0} \rightarrow (\mu^+\mu^-)(K^+\pi^-)$

Detection asymmetry (K $\pi$ ) identical

A<sub>CP</sub> negligible for this decay

![](_page_18_Figure_10.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

• Detection asymmetry determined from charm decays

| $D^{*+} \rightarrow D^0(K\pi)\pi_s^+$   | Four measured raw asymmetries                |  |
|-----------------------------------------|----------------------------------------------|--|
| $D^{*+} \rightarrow D^0(KK)\pi_s^+$     | Ace from PDG (or assumed zero)               |  |
| $D^{*+} \rightarrow D^0(\pi\pi)\pi_s^+$ |                                              |  |
| $D^0 \rightarrow K\pi$                  | Two production and two detection asymmetries |  |

• Putting it all together (using 320 pb<sup>-1</sup>)

 $A_{CP}(B^0 \rightarrow K\pi) = -0.088 \pm 0.011 (stat) \pm 0.008 (syst)$  World best measurement (>5  $\sigma$ )

 $A_{CP}(B_s^0 \rightarrow K\pi) = 0.27 \pm 0.08 \text{ (stat)} \pm 0.02 \text{ (syst)}$  First evidence (>3 $\sigma$ ) in this decay

CERN-LHCb-CONF-2011-011, paper in preparation

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_2.jpeg)

• Decay time distribution of  $B_S^0$  mesons are described by

$$\Gamma_{B_s^0 \to f}(t) = R_H \cdot e^{-\Gamma_H t} + R_L \cdot e^{-\Gamma_L t} \quad \text{since} \quad \frac{\Delta \Gamma_s}{\Gamma_s} \sim 10\%$$

- where  $R_{\rm H}$  and  $R_{\rm L}$  depend on the decay mode
- Specific lifetime of decay to a CP-even final state (e.g.  $B_s^0 \rightarrow K^+ K^-$ )
  - CP conserved:  $R_{H} = 0$
  - Sensitive to  $a_{CP}^{dir}$ ,  $a_{CP}^{ind}$  and  $\Delta\Gamma_{\!s}$
- Constrain these parameters by comparing to other decay modes
  - E.g. flavour specific  $B_s^0 \rightarrow D_s \pi$
  - and CP odd  $B_s^0 \rightarrow J/\Psi f_0(980)$
- RH = RL (mod. CPV in decay)
  - RL = 0 if CP conserved

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

- Main experimental challenge in lifetime measurements
  - Correct for bias introduced by event selection
  - Two independent methods were used
- Result with 2010 data (37 pb<sup>-1</sup>)

 $\tau_{B_s^0 \to K^+ K^-} = 1.440 \pm 0.096 \,(stat) \pm 0.08 \,(syst) \pm 0.03 \,(mod \, el) \, ps$ 

![](_page_21_Figure_8.jpeg)

Update with full 2011 data set in preparation

![](_page_21_Figure_10.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Picture_2.jpeg)

- They give complementary constraints on  $B_s^0$  mixing parameters
  - Lifetime difference between the mass states
  - Weak mixing phase  $\Phi_s$

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

 $au_L$  $au_{{}_{II}}$ 

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

# Time dependent CPV

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

• Decay rate into a common final state

 $\Gamma\left(B_q^0 \to f\right) \propto e^{-\Gamma_s t} \cdot \left[A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t) - \cosh\left(\Delta \Gamma_q t/2\right) - A_{\Delta \Gamma} \sinh\left(\Delta \Gamma_q t/2\right)\right]$ 

• Tag initial flavour state and fit

$$\mathcal{A}_{f}^{\mathcal{CP}}(t) = \frac{\Gamma_{\overline{B}\to f}(t) - \Gamma_{B\to f}(t)}{\Gamma_{\overline{B}\to f}(t) + \Gamma_{B\to f}(t)}$$

![](_page_24_Picture_7.jpeg)

Determine independently A<sub>dir</sub> and A<sub>mix</sub>

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_2.jpeg)

- $A_{dir}$  and  $A_{mix}$  from  $B^0 \rightarrow \pi^+ \pi^-$  and  $B^0_s \rightarrow K^+ K^-$ 
  - $\gamma$  from loop-dominated decays
  - Sensitive to BSM processes

LHCb Roadmap arXiv:0912.4179

- $A_{dir}$  and  $A_{mix}$  from  $B_s^0 \rightarrow D_s K$  and  $B^0 \rightarrow D^{(*)} \pi$ 
  - $\gamma$  from tree-dominated decays
  - Insensitive to BSM processes
- First time dependent CP asymmetry measurements in preparation

Tree-dominated  $\gamma$  can also be measured at LHCb from time-integrated rates (ADS/GWL methods) and Dalitz analysis.

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_2.jpeg)

- Fruitful year of data taking 2011
  - Looking forward to 2012
- First evidence of CP violation in Charm
  - Rich programme to further constrain the CPV parameters in the charm sector
- Several world-best measurements in hadronic B decays
  - CP asymmetries
  - Lifetime measurements
- First time dependent CP asymmetries in preparation
  - Determine  $\gamma$  with and w/o BSM contributions