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“Background”

@ The following examples arise in the context of 2— and 3—-loop
massive single scale Feynman diagrams with operator
insertion.

@ These are related to the QCD anomalous dimensions and
massive operator matrix elements.

@ At 2-loop order all respective calculations are finished:
M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven,

Nucl. Phys. B472 (1996) 611;
I. Bierenbaum, J. Bliimlein, S. Klein, Nucl. Phys. B780 (2007) 40;

|. Bierenbaum, J. Bliimlein, S. Klein, C. Schneider, Nucl.Phys. B803
(2008) 1;

and lead to representations in terms of harmonic sums.
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Example 1: All N-Results for 3—Loop Ladder Graphs

Joint work with J. Bliimlein (DESY), C. Schneider (RISC)
A. Hasselhuhn (DESY), S. Klein (RWTH)

Consider, e.g., the diagram

(LB

(containing three massive fermion propagators)

4

Around 1000 sums have to be calculated
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A typical sum

N-2j

2

=0 s

+

1 N+s—j—2 o

_2(_1)S+f(f‘*5'1)(_j'*'l\/r'*'s_z)(N—j)!(s—l)!a!Sl(r + 2)
(N=n)(r+1)(r+2)(—J+N+o+1)(—j+N+o+2)(—j+ N+s+0)!

j—
1 r=0 o=0

-~
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A typical sum

N-2j

+

1 N+s—j—2 oo _2(—1)*" J+1)(—J+N+s 2)([\/—_])'(5 1)'a'51(f—|—2)
Z N=r)(r+1)(r+2)(—j+N+o+1)(—j+N+o+2)(—j+ N+s+o)!

j=0 s=1 r=0 o=0

.

_ (2N2 46N +5) S 5(N)?
2N+ 1)(N+2)
+...

+S2-12(N) +S21,-2(N)

where, e.g.,

ZN j=1
5—2717—2(N) - = " Vermaseren 98;Bliimlein/Kurth 98
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A typical sum

N—=2 j+1 N+s—j—2 oo _2(—1)*" J+1)(—J+N+s 2)([\/—_])'(5 1)'a'51(f—|—2)
Z Z (N=n)(r+1)(r+2)(—j+N+o+1)(—j+N+to+2)(—j+N+s+o)!

j=0 s=1 r=0 o=0
(2N? + 6N +5) S_o(N)?
= + S5 5 12(N)+S5 21 2(N
2(N +1)(N +2) 2-12(N) - 5-21,-2(N)
1
+--=5111(-1,2, 5 N) + 52,1,1,1(1 2; N)
+...
where, e.g., ’ 145 S—sums occur

N
=1
S21,11(1, )172v N) Z -

S. Moch, P. Uwer, S. Weinzierl 02
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For a; € N and x; € R* we define
x{l x,';k

Sal,...,ak (X17 cte 7X/<; n) = Z -1 o

PED
] )
n>i>h>>i>1 1 k
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For a; € N and x; € R* we define

Xil Xik
. _ 1 k

Sal,~..,ak (Xla...,Xk,n)— Z ,TllTk
n>i>h>>i>1 1 k

1 n ok Zk ) (%)J ?3:1 (_il),
S23.1 <272,—1;n> = Z s J

Sa31(—1,1,-1;n) = > 12 . =S 23-1(n)
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Algebraic Relations

Sara1,2 (XlaX27X3; ”) =
Sa (i) Sarar (x1, %2 n) + Saya1ta (x1,x2x3; ) — Say (x1:n)

Sa,an (X3, %21 1) = Sap 221 (X3, X1%03 1) + Sap 2,0 (X3, %2, X15 1)

531,31,32 (x1,X3,x2; 1) =
532 (Xz; n) Salval (X]-? X3, n) + Sal,a1+az (X17 X2X3; n) - 531 (Xl; 17) Saz,a1 (X2, X3, n)

—Say 08 (X2, X135 1) + Sy oy, (X2, X3, x1; 1)
Sara1.a (X2, X1, X31 1) =

—S., (x3; 1) Say.ay (x1,%2; 1) + Say (x2; 1) Say.ar (X1, X383 1) + S2ay.8, (X1%2, X35 1)

_Sa1+ag,a1 (X1X3’X2; n) + 532131«,31 (X37X1,X2; n)
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Differential Relations

@ integral representation

1 AR T S T A R L B |
Si21(2,z,1;n) = / / — / / al dxgqdxzdxpdxy
) 2 0 X1 — 1 1 X2.Jo X3— 2 2 X4 — 1
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Differential Relations

@ integral representation

1 1 a g o g
e = 4 d dxzdxad)
S12,1 (2,2, n) /0 xlfl/ / X372/ a1 Ixa dx3 dxa dxy

o differentiation

pa 1 X1 X3
7651‘2‘1 ( 2l n) = / 1 / 1 / / 7|og(><4) dxq dxzdxadxy
on o x1—1 x3 — 2 X4 —
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Differential Relations

@ integral representation

1 1 o M xp -1
5 Lin) = dxgdxsdxod
51’2‘1(2’2'1") /oxlfl/ / 372/ xg — 1 THTETRE

o differentiation

¢ 2,41 ! * s
7651‘2‘1 ( i n) = / 1 / ! / / 7|og(X4)dX4dX3dX2dX1
on o x1—1 x3 — 2 X4 —

@ integration of right hand side

()5121( ln)

on —2H,0,1,2,1(1) — 4Ho,0,2,1,1(1) — Ho,1,0,2,1(1) — Ho,1,2,0,1(1) — 2Ho.2,0,1,1(1)

—Ho,2,1,0,1(1) + (H2(1)(Ho,1,2(1) + Ho2,1(1)) + 2Ho,0,1,2(1) + 2Ho,0,2,1(1
+Ho,1,0,2(1))S1 (2; n) + S2 (0) (3(HO'172(1) T Hoza(1)) +S12 (27 %: n

1 1
—Hz(1)S1.21 (2. %,1; n) —S_1(0)S121 (2, 5,1; n) —S122 (21 531; ")

1 1
—25131 (2, 5»1; n) —Sa21 (2, Evl; n)

~—— —
~—
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Multiple Polylogarithms (M-Logs)

Let a € R and
_ { a, ifa>0
oo, otherwise
We define f as follows:
f:(0,9) =R
1 o
fa(X) - { \Xa’\fskw’ gtie?w?se.

J. Ablinger Harmonic Sums and their Generalizations



Multiple Polylogarithms (M-Logs)

Let a € R and

{a, ifa>0
q:

oo, otherwise

We define f as follows:

f:(0,9) =R
fa(x) = X2y _
) { Ta=sign(a) x° otherwise.

Multiple polylogarithms: Let m; € R and let ¢ = min,,~o m;, we
define for x € (0,q) :

H(x) = 1,
%(Iogx)k, if (my,...,mg)
Hmhmzw-,mk(x) =

f(;(f,,,l(y)Hm2 ,,,,, m(y)dy, otherwise.
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Number of Basic S-Sums

We consider

Sapa (X1 -+ Xki )

with x; € {1,-1,1/2,-1/2,2, —2}.
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Number of Basic S-Sums

We consider

Sarar (X1, Xk )
with x; € {1,-1,1/2,-1/2,2, —2}.

Example (Harmonic Sums (x; € {1, —1}))

Number of
All | Na| Np | Ny | Nap | Naw | Nou | Napm
2 2 2 1 2 1 1 1
6 3 4 4 1 2 3 1
18 8 12 14 5 6 10 4
54 18 36 46 10 15 32 9

162 | 48 | 108 | 146 30 42 | 100 27
486 | 116 | 324 | 454 68 | 107 | 308 65
1458 | 312 | 972 | 1394 | 196 | 294 | 940 187
4374 | 810 | 2916 | 4246 | 498 | 780 | 2852 486

o ~NO U~ WN RS
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Number of Basic S-Sums

We consider
Sal,...,ak (Xl, ey Xk, n)

with x; € {1,-1,1/2,-1/2,2, —2}.

Example

Each of the indices {1/2,—1/2,2, —2} is allowed to appear just
once in each sum.

Number of
Weight All Ny Np Nap
6 6 6 6

38 23 32 17
222 120 184 97
1206 654 984 543
6150 | 3536 | 4944 | 2882
29718 | 18280 | 23568 | 14744

SOl W

J. Ablinger Harmonic Sums and their Generalizations



Example 1: continued

J C. Schneider's Sigma.m

Around 1000 sums are calculated containing in total 533 S—sums
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Example 1: continued

J C. Schneider's Sigma.m

Around 1000 sums are calculated containing in total 533 S—sums
U HarmonicSums.m

After elimination the following sums remain:

S_4(N), S5_3(N), S_2(N), 51(N), S2(N), S3(N), Sa(N), S—3.1(N),
S5_21(N), S5,—2(N), S2.1(N), S3.1(N), S—2.1,1(N), S2,1,1(N)
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Asymptotic Expansion of Harmonic Sums

We say that the function f : R — R is expanded in an asymptotic
series

00 ax
f(X)NZF’ X — 00,
k=0

where ay are constants, if for all K >0

RK(X):f(x)—éjﬁ:o(;J, X = 0.
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Why do we need these expansions of harmonic sums?

Eg.,
o for limits of the form
. 765
n||—>nc1>o n (52([7) — CQ — 52’2(17) + 10>

@ for the approximation of the values of analytic continued
harmonic sums at the complex plane

52’_3(—20 + 10i)
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1
S_13(n) = (71)”/0 x”iHi’o_fE(X) dx + const
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o(x)

' .H
S13(n) = (71)”/0 x"%g(x)derconst
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o(x)— (1 —x) = Zakx

1
XnHl,o.,o(X)

dx + const
1+ x
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o(x)— (1 —x) = Zakx

——
H1,0,0(x)
1+ x

0nn+1 n+k)

dx + const

1
S_13(n) = (71)”/0 x"
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o(x)— (1 —x) = Zakx

——
H1,0,0(x)
1+ x

oo ' (oo}
P Rk
0nn+1 (n+ k) k_lnk

dx + const

1
S_13(n) = (71)”/0 x"

J. Ablinger Harmonic Sums and their Generalizations



o(x)— (1 —x) = Zakx

' .H
S13(n) = (71)”/0 x"%g(x)derconst

i ak+1k' o >, bk
Zonn+1 _Z

(n+ k) k=1ﬁ
by = a1
k-2
b= (~1)'Si_ja—i(k — 1)
=0
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90( )4)9017)( Zakx

L H
S-13(n) = (*1)’7/0 X"%E(X)derconst

o0 ' fo%e)
> =
0nn+1 .(n+k) k—1”k

by = a1
k—2

b= (-1)'Si_jau_i(k = I)!
1=0

Sas(n) ~ (-1)7 (7L+i,i, 5 >+%

1 1 1 1 19 <22
L VLN e S _
1) (2n a2 8t 4n6>C3 20
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in[1}:= SExpansion[S[-1, 3, n], n, 10]

Out[1]=

(1)< 5_i_5+31+133_169_163)+

4n® ' 8n*  8n5  16n5 ' 24n7 ' 96n®  24n°  16n10

31223 | p ( 1 1 17 i) ;3. 1922
4 2n

m+W‘m+16na‘4nw 20

in2l:= GetApproximation[S[-1,3,n], {-2.5, 2}]

outf2)= —0.795096 — 0.105476 i
3= HLimit[n*(S[2, n] - 22 - S[2, 2, n] + 7*22%/10), n]

out3]= -142z2
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We consider another diagram:
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We consider another diagram:

Juu

. G 353+ N2 + 12N + 16 s2 4 4(2N +3) s
PTINFDOINH(NT3) 6 T 2Nk DN+ 2) T (N 12(N+2) 7!
8(2N + 3) Nt3 N N 3N2 440N +56 1
Bk 3-(-1 S (NS g+ |2 T S |
N+ 1PN +2) AR S L G e Rl ey TR B R B
73"’7;1753 C2(-1)VS gy — (N 1 3)Spy + 2V, (% L N)

+2M435 14 (%, 1,1 N) } + 0(e)
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We consider another diagram:

Juu

. G 353+ N2 + 12N + 16 s2 4 4(2N +3) s
PTINFDOINH(NT3) 6 T 2Nk DN+ 2) T (N 12(N+2) 7!
8(2N + 3) Nt3 N N 3N2 440N +56 1
Bk 3-(-1 S (NS g+ |2 T S |
N+ 1PN +2) AR S L G e Rl ey TR B R B
73"’7;1753 C2(-1)VS gy — (N 1 3)Spy + 2V, (% L N)

+2M435 14 (%, 1,1 N) } + 0(e)

remaining sums:

S1(n),S2(n) 53 (n),S—3(n), Sa1 (1) ,S_21 (n) , 1.2 (% 1 n> Siit G 11 n>
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mptotic Expansion: Basic ldea

@ again we start from the integral representation

1
1 1 5 1 X1 1 X2 1 X3 n __ 1

Si21l 75 Lin) = /6 1/ 7/ 1/ % dxq dxzdxodxy
32 o xi—gJt xJo xs—3J1 xa-1

6
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mptotic Expansion: Basic ldea

@ again we start from the integral representation

1
s 1 Pl e 1 S xp -1
S121 1>1-1;" = /6 1/ 7/ 1/ % dxq dxzdxodxy
’ 3’2 0o x1—5JL xJo x3—3J1 xg— 1

6

@ integration by parts leads to integrals of depth one:

1 1
11 1 1 1 3x"—1 1 e x"—1
S0 (3.310) =~ (M0aQ) - Mi@Hos@) [T M@ [T M0

J. Ablinger Harmonic Sums and their Generalizations



mptotic Expansion: Basic ldea

@ again we start from the integral representation

1
11 RS o= 1

S121 ( .1 n) = /6 T / / / % dxgdxzdxadxy
372’ 0o x—5J! x3—xJ1 x4—1

@ integration by parts leads to integrals of depth one:

1 1
11 1 1, 1 [Fx—1 1, [ix"—1
5”1(3 i ) - 7(Hlvov%(é)fH%(E)H&%(E)) /é xfldXJrHO%(é),/o EER e

@ as before for harmonic sums we can expand these integrals
and get

.
Sxno1 15 33 3 3 4074 366
~ —H H n [ ST R N "

/% 1™ 1G5 ot 1(3)+3 ( n5+8n4 27 o ( 312505  625m°

42
125 /13 25 n2

Fx7—1 1 4074 366 42 6 1\ 10834
T Hi(dx ~ Hy 67" - - =)=
/0 o1 300 B ( ( 3125 6250 1257 | 250 5n) 625m°
456 L
12504 25n3 5n2
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1
S121(3 b )N

1 o aen A2Hon(1)  6Hoa(1)  Hoa(1) ./ 21 3 1
121 (3 2 ) +3 (2 (L( ) ( 255 s o5y 110802 (125n3 et 107)
A6 136 G ) +|0g(2)( 42Hoa(1) | 6Hoa(l) H0,2(1)) | 42Ha()Hoa(1)

125n% ' 5n® ' 2502 10n 12513 2502 5n 12503

2461Ho2(1) n 126Ho02(1)  42(Hoo2(1) + Ho22(1)) — 42(Hoo2(l) +Hog2(1)) — 42(Hoez(1) + Ha202(1))

1500n3 125n3 125n3 12503 12503
42(Ho,0,2(1) + He02(1)) B 42He2,0(1) _ 6Ha(1)Ho2(1) | 27Ho2(1) _ 18Ho,02(1) | 6(Ho,02(1) 4+ Ho22(1))
12503 125n3 25n2 50n2 25n2 25n2
6(Ho0.2(1) + Hos2(1) | 6(Hoo2(1) + Haoa(1)) | 6(Hooa(1) + Heoa(1))  6He20(1)
' 25n2 25n2 25n2 25n2
 Ha2(1)Ho2(1) n 3Hoo2(1)  Hop2(1) +Ho22(1)  Hooa(l) +Hog2(1)  Hop2(1) + Hae2(1)
' 5n 5n 5n 5n 5n
Hoo2(1) + Heo2(1)  He20(1) 7 1 27 2461
5n sn T log(2)? (7125n3 * %502 " 30m ) + log(2)? (100n2 - 3000n3)

261G | 63 27G 0G| 3G\ 3Ha(DMoa(l)  SHooa(l) | 3(Hooa(1) + Hoza(1)
300003 © 250n3  100n2  50n2  20n 2n3 2n3 2n3
~ 3(Hoo2(1) + H2,02(1)) n 3Hz(1)Ho2(1) 9H002( ) 3(Hoo2(1) + Ho22(1)) ~ 3(Hoo2(1) + Ha02(1))
' 2n3 4n? 4n2 4n? 4n?
Ha(1)Ho2(1)  3Hoo2(1) | Hoo2(1) +Hop2(1) | Hooz(1) +Hoo2(1)
- + +
2n 2n 2n 2n
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Cyclotomic Harmonic Sums

5(317b1,61),---7(a/,b/701)(51’ e Sh n) =
n

51 }
Z (arky + by)e 5(3271927C2)~--v(3/vb/vcl)(52’ cwes 813 K1),
k=1

with Sy =1 and N,aj,c; € N, bj € Ng, s; ==+1,a; > b;.
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Cyclotomic Harmonic Sums

5(317b1,61),---7(a/,b/701)(51’ e Sh n) =
n

51 }
Z (arky + by)e 5(3271927C2)~--v(3/vb/vcl)(52’ cwes 813 K1),
k=1

with Sy =1 and N,aj,c; € N, bj € Ng, s; ==+1,a; > b;.

@ algebraic relations
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Cyclotomic Harmonic Sums

5(317/31,61),---7(3/,/3/70/)(517 e SI n) =
n

51 )
Z (arky + bp)e 5(327b27C2)7~--7(3/7b/7CI)(52’ s S5 K1),
ki=1

with Sy =1 and N,aj,c; € N, bj € Ng, s; ==+1,a; > b;.

@ algebraic relations
o differential relations
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Cyclotomic Harmonic Sums

5(317b1,61),---7(a/,b/701)(51’ e Sh n) =
n

51 }
Z (arky + by)e 5(3271927C2)~--v(3/vb/vcl)(52’ cwes 813 K1),
k=1

with Sy =1 and N,aj,c; € N, bj € Ng, s; ==+1,a; > b;.

@ algebraic relations
o differential relations
@ multiple argument relations
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Cyclotomic Harmonic Sums

5(317/31,61),---7(3/,/3/70/)(517 e SI n) =
n

51 )
Z (arky + bp)e 5(327b27C2)7~--7(3/7b/7CI)(52’ s S5 K1),
ki=1

with Sy =1 and N,aj,c; € N, bj € Ng, s; ==+1,a; > b;.

algebraic relations
differential relations
multiple argument relations
asymptotic expansion
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Cyclotomic Harmonic Sums

5(317/31,61),---7(3/,/3/70/)(517 e SI n) =
n

51 )
Z (arky + bp)e 5(327b27C2)7~--7(3/7b/7CI)(52’ s S5 K1),
ki=1

with Sy =1 and N,aj,c; € N, bj € Ng, s; ==+1,a; > b;.

algebraic relations

differential relations

multiple argument relations

asymptotic expansion

allowing s; € R leads to cyclotomic S-sums.
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Harmonic Sums and their Generalizations

Cyclotomic S-Sums
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Cyclotomic Harmonic Polylogarithms (C-Logs)

We now define the alphabet

*= {i} N { ¢kx(/x)

where ®(x) denotes the kth cyclotomic polynomial and ¢ is
Euler's totient function.

kGN,0§/<<,0(k)},

J. Ablinger Harmonic Sums and their Generalizations



Cyclotomic Harmonic Polylogarithms (C-Logs)

We now define the alphabet

*= {i} N { ¢kx(/x)

where ®(x) denotes the kth cyclotomic polynomial and ¢ is
Euler's totient function.

kGN,0§/<90(k)},

Definition (Cyclotomic Harmonic Polylogarithms)

Let m; € 2 we define for x € (0,1) :

H(x) = 1,
%(Iogx)k, if (my,...,m

oo k)
M i) = — (L., 1

fox miHpm, .. m(y)dy, otherwise.
k is called the depth of Hpy(x).
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Connection between these structures

integral representation (inv. Mellin transform)

power series expansion
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The Package HarmonicSums

The package HarmonicSums offers functions to

@ find algebraic and structural relations of harmonic sums and
their generalizations
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The Package HarmonicSums

The package HarmonicSums offers functions to
@ find algebraic and structural relations of harmonic sums and
their generalizations

@ compute the inverse Mellin transform of harmonic sums and
their generalizations, this leads to harmonic polylogarithms
and their generalizations
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The Package HarmonicSums

The package HarmonicSums offers functions to
@ find algebraic and structural relations of harmonic sums and
their generalizations

@ compute the inverse Mellin transform of harmonic sums and
their generalizations, this leads to harmonic polylogarithms
and their generalizations

o find algebraic and structural relations of harmonic
polylogarithms and their generalizations
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The Package HarmonicSums

The package HarmonicSums offers functions to
@ find algebraic and structural relations of harmonic sums and
their generalizations

@ compute the inverse Mellin transform of harmonic sums and
their generalizations, this leads to harmonic polylogarithms
and their generalizations

o find algebraic and structural relations of harmonic
polylogarithms and their generalizations

@ apply algebraic and structural relations to harmonic sums
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The Package HarmonicSums

The package HarmonicSums offers functions to
@ find algebraic and structural relations of harmonic sums and
their generalizations

@ compute the inverse Mellin transform of harmonic sums and
their generalizations, this leads to harmonic polylogarithms
and their generalizations

o find algebraic and structural relations of harmonic
polylogarithms and their generalizations

@ apply algebraic and structural relations to harmonic sums

@ calculate the asymptotic expansion of harmonic sums and
their generalizations
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The Package HarmonicSums

The package HarmonicSums offers functions to
@ find algebraic and structural relations of harmonic sums and
their generalizations

@ compute the inverse Mellin transform of harmonic sums and
their generalizations, this leads to harmonic polylogarithms
and their generalizations

o find algebraic and structural relations of harmonic
polylogarithms and their generalizations

@ apply algebraic and structural relations to harmonic sums

@ calculate the asymptotic expansion of harmonic sums and
their generalizations

e perform several other tasks not mentioned in this talk (see,
e.g., my PhD thesis, April 2012)
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