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Introduction

Phenomenology at new colliders requires NLO (and
NNLO) calculations
One of the parts of these calculations is the virtual
part (loop diagrams)
Reduction methods are used due to the complexity
and the large number of Feynman integrals
One-loop case completely solved,towards a two-loop
reduction method



Historical Background

Already attempts in the 60’s (D.B.Melrose
(1965),G.Källèn and J.Toll (1965) )
Passarino-Veltman reduction (general applicability,
major achievements but not designed at amplitude
level)
Unitarity based methods-
Bern,Dixon,Dunbar,Kosower (major advantage:
designed to work at amplitude level, limited
applications)
Quadruple and triple cuts- Britto, Cachazo, Feng
(major simplifications)
Reduction at the integrand level
(Ossola,Papadopoulos,Pittau)



Definitions

A general scalar Feynman integral of order n is given∫
d4q

1
D1D2...Dn

(1)

with Di = (q + pi)2 −m2
i = q2 + 2pi · q + µi the

inverse propagators
pi ’s are the momenta entering the propagators,
related to the external momenta
we don’t assume momentum conservation,we rather
deal with integrand-Graphs or i-Graphs given by

1
D1D2...Dn

instead of Feynman Graphs
We deal with scalar integrals without loss of
generality



Reduction at one loop

Write the number ‘one’ in terms of denominators

1 =
n

∑
i

Ti(q)Di (2)

If we find such Ti ’s then reduction is achieved

1
D1 · · ·Dn

=
T1(q)

D2D3 · · ·Dn
+ · · ·+ Tn(q)

D1D2 · · ·Dn−1
,

(3)
Equation polynomial in q



Reduction with trivial coefficients

We start by assuming that the Ti ’s are constants in
the loop momentum

Tj(q) = xj

For any value of q

q2
n

∑
j=1

xj + 2qµ

n

∑
j=1

xjpj
µ +

n

∑
j+1

xj µj = 1 (4)

For the d + 2 equations we need d + 2 coefficients
In 4 dimensions a hexagon is decomposed to
pentagons with trivial coefficients



Reduction with coefficients linear in q

We assume now

Tj(q) = xj +
4

∑
k=1

xj ,k (q · tk ) (5)

tk are d linearly independent arbitrary vectors,
forming a base in d dimensions
We start with (d + 1)× n coefficients,not all being
independent.
The tensor structures we have to construct are
denoted by

1 , qµ , qµqν , q2qµ . (6)

Tensor structures are given by d2+5d
2 + 1 (19 in

d = 4)
Number of independent coefficients numerically (with
rounding errors)



n d = 6 d = 5 d = 4 d = 3 d = 2 d = 1
2 14-0 12-0 10-0 8-0 6-0 4-0
3 21-1 18-1 15-1 12-1 9-1 6-2
4 28 -3 24-3 20-3 16-3 12-4 8-4
5 35-6 30-6 25-6 20-7 15-7 10-6
6 42-10 36-10 30-11 24-11 18-10 12-8
7 49-15 42-16 35-16 28-15 21-13 14-10
8 56-22 48-22 40-21 32-19 24-16 16-12

The rank of M for various d and n,
given as the difference ξ − q.



Decomposability with linear terms

Every integral of order d + 1 is decomposed to an
integral of order d with coefficients linear in the loop
momentum
In the most interesting case of d = 4 a pentagon is
decomposed to boxes
Situation does not improve with coefficients of higher
order
Uniqueness of the decomposition



Reduction at two loops

A generic two loop diagram has three kind of
propagators

D(l1 + p1), D(l1 + p2), ..., D(l1 + pn),
D(l2 + q1), D(l2 + q2), ..., D(l2 + qk ),
D(l1 + l2 + r1), D(l1 + l2 + r2), ..., D(l1 + l2 + rs),

(7)

We denote this iGraph by (n,s,k) and we define it to
be of order n + k + s.
Due to these mixed propagators the problem is not
just a double copy of a one-loop case



Reduction at two loops

At one-loop the base of Master Integrals is known a
priori.At two loop not
Cannot be just scalar integrals (i.e. l1.q1 is not
reducible,notice the difference with one loop)
Reduction seems to depend on what kind of iGraphs
one wants to reduce to
Our motivation is to find out what is the highest
number of denominators every iGraph can be
decomposed to (i.e. in one-loop it is d)
For unitarity reasons we expect this to be 2d



Reduction at two loops

‘Counting to one’ again

n1

∑
j=1

xjD(l1 + pj) +
n1+n2

∑
j=n1+1

xjD(l2 + pj) +

n

∑
j=n1+n2+1

xjD(l1 + l2 + pj) = 1

(8)

Notice that n1,2,3 ≤ d , otherwise the problem can be
solved as a one loop problem



Reduction at two loops

Imagine the iGraph (5,1,1) in 4 dimensions. We can
put all coefficients of l2 to zero and solve the
pentagon to boxes problem for l1 only (as we saw
before with linear terms)
Restricted number of iGraphs to analyse-highest
being the (d,d,d)
An iGraph of order 2d + 4 is decomposed to an
iGraph of order 2d + 3 with trivial coefficients xj



Reduction at two loops with linear terms

We try now the linear terms of the following type

xj = ∑
i
(aj + bij(l1 · ti) + cij(l2 · ti)) (9)

We again find the number of independent coefficients
(with rounding errors) and compare it with the
number of tensor structures. We give the table with
our findings, using again a horizontal line for the
reducible cases. T(d) is the number of tensor
structures



Reduction at two loops with linear terms

L = 2, linear
T (d) = (4d2 + 18d + 2)/2

n d = 6 d = 5 d = 4 d = 3 d = 2
3 39-0 33-0 27-0 21-0 15-0
4 52-0 44-0 36-0 28-0 20-0
5 65-1 55-1 45-1 35-1 25-1
6 78-3 66-3 54-3 42-3 30-3
7 91-6 77-6 63-6 49-6 35-8
8 104-10 88-10 72-10 56-10 40-10
9 111-15 99-15 81-15 63-17 45-18
10 130-21 110-21 90-21 70-24 50-23
11 143-28 121-28 99-30 77-31 55-28
12 156-36 132-36 108-39 84-36 60-33
13 169-45 143-47 117-48 91-45 65-38
14 182-55 154-58 126-57 98-52 70-43

T (d) 127 96 69 46 27



Reduction at two loops with linear terms

In d dimensions, every 2d + 2 iGraph is decomposed
to a 2d + 1 with linear terms.
In order to go one step further we have to consider
2d + 1 iGraphs with coefficients of
quadratic,cubic,quartic dependence in the loop
momenta
The set of iGraphs of interest is even more restricted.
In d = 2 we have to consider the (2,1,2) only, in
d = 3 the (3,1,3),(3,2,2) and in d = 4 the
(4,1,4),(4,3,2) and (3,3,3)



Reduction at two loops with higher order terms

We repeat the proceedure using quadratic, and cubic
terms terms. The reducibility of diagrams with higher
terms depends on the number of dimensions
We find that the (2,1,2) is reducible in 2 dimensions
with quadratic terms, while the similar 2d + 1 iGraphs
in 3 and 4 dimensions are not.
We find solutions for the iGraphs of order 7 in 3
dimensions with cubic terms
We find solutions for the iGraphs of order 9 in 4
dimensions with cubic terms



Reduction at two loops with higher order terms

For all the cases above we solve numerically the
1 = 1 equation.
We construct a base for two loop iGraphs with at
most 2d denominators.We proved it in 2,3 and 4
dimensions.
We are interested in a base for the moment (not
necessarily the minimal base)
Once again, when considering iGraphs with 2d
denominators, they must have a maximal cut. For
example, a (6,1,1) in 4 dimensions does not belong in
this category as we saw and as expected from
Unitarity.



Not the end of the story yet!

Consider the following Feynman integral in 2
dimensions∫

d2l1d2l2
1

l21 (l1 + p)2(l1 + l2)2l22 (l2 − p)2
(10)

It should be decomposable. We write:

1 = a1l21 + a2(l1 + p)2 + · · ·+ a5(l2 − p)2 (11)

There should be coefficients that this holds for any l1
and l2



Not the end of the story yet!

Find l1 and l2 such that

l21 = (l1 + p)2 = l22 = (l2 − p)2 = 0 (12)

However,for such l1 and l2 also

(l1 + l2)2 = 0

It means that there are l1 and l2 for which 1 = 0! This
diagram is NOT decomposable!



Solution

The diagram above has a problemtaic maximal cut.
However, there is a category of terms that one can
add to the 1 = 1 equation that vanish upon
integration and can make the equation hold for every
l1 and l2.
Any total derivative in dimensional regularisation
vanishes (I.B.P) (Chetyrkin and Tkachov)
An example of an I.B.P. identity is the following

∫
∂

∂lµ
1

(
(l1 + p1)µ

D(l1 + p1)D(l2 + p2)D(l1 + l2 + p3)

)
= 0

(13)



Solution

One can now add at the Integrand level all these total
derivatives (together with the previous terms we had)
and ask for coefficients
The problem is now solved!
For the particular 2-dimensional problem, after
integrating we get the following solution (which
agrees with the literature)

∫ 1
l21 (l1 + p)2(l1 + l2)2l22 (l2 − p)2

=

−1
p2

∫ 1
l21 (l1 + p)2l22 (l2 − p)2

+
4

(p2)2

∫ 1
l21 (l1 + l2)2(l2 − p)2

(14)



I.B.P. at the Integrand level

We tested the I.B.P.’S equations for other known
examples and they work
As a by-product, we can use the I.B.P.’s at the
integrand level at one loop as well and generalise the
OPP method with denominators of higher powers



Conclusions

We presented Reductions at the Integrand level for
one and two loop amplitudes
Although the one loop case is already known we
could rediscover things with a slightly different
method. Important because the coefficients of the
reduction depend on the base one asks to reduce to
At two loops we showed why we expect unitarity to
work, and how by simple counting one can
decompose two-loop iGraphs
For special cases one needs to use Integration By
Parts identities. We use them at the integrand level
for the first time



Conclusions

In principle both counting and I.B.P’s should be used
Our method is very general (does not depend on
masses or planar or non-planar Graphs) and is very
simple as well.



BACKUP SLIDES



Finding the independent coefficients

Choose random values for external momenta and
masses
Choose as many random values for q as the number
of coefficients and substitute in equation 2
For these ξ values we get a set of ξ linear equations
for the ξ unknowns x:

ξ

∑
j=1

M i
jx j = 1 , j = 1, . . . , ξ . (15)

In case the number of independent tensor structures
we can form are less than ξ the determinant of M
vanishes. In a numerical computation there will be of
course rounding errors



Finding the independent coefficients

For q zero eigenvalues this Matrix will have a
determinant of the order 10−pq where p is the
number of significant digits
Running for different precisions we get the value q
and the rank of the Matrix from ξ − q
If the rank of the Matrix is equal to the number of
tensor structures the integral is decomposable
For different dimensions and number of propagators
we give the results of the number of independent
coefficients
We denote the limit of decomposability with
horizontal lines



Decomposability with spurious terms

In the conventional approach, a pentagon is
decomposed is decomposed to boxes with spurious
terms

1 =
5

∑
i=1

(ai + ãiSi(q))Di (16)

The Si ’s vanish after integration, by construction.
Their form (q-dependence) is known
Triangles in our case vanish giving the same
decomposition
The resulting base for one loop integrals is scalar
integrals up to 4 denominators


