Top Quark Physics at Hadron Colliders (focussing on the forward region)

Rhorry Gauld, thanks to Ulrich Haisch

University of Oxford

10/09/2012

Why Study Top Quarks?

- $m_t \approx 173 GeV$ (important for loops)
- $\Gamma_t \approx G_F m_t^3 \approx 10 GeV$ (unstable)
- $\Gamma_t \gg \Lambda_{QCD}$ (weak decays, spin info.)
- $V_{tb} \cong 1$?, no top mesons
- PDF information of high-x gluons
- Test of perturbative QCD

$t\bar{t}$ pair production at Hadron Colliders

Contribution to $\sigma_{inc.}$ (pb)

TeV2 $(p\bar{p})$	LHC7	LHC14
1(14%)	130(81%)	820(91%)

$t\bar{t}$ pair production at Hadron Colliders

Contribution to $\sigma_{inc.}$ (pb)

Working point - $m_t \approx 173 GeV$

 $\begin{array}{l} @1 TeV - x = 0.2 \\ @3.5 TeV - x = 0.05 \\ @7 TeV - x = 0.025 \end{array}$

R. Gauld (University of Oxford)

d(x, Q²)

$t\bar{t}$ asymmetry @NLO

Why is there an asymmetry at all? g
ightarrow q ar q vector coupling

Blue (Real), Red (Virtual). Asymmetric under $C(t\bar{t})$

- \bullet Results in a 'colour charge repulsion', $q \Rightarrow t$
- Forward-backward asymmetry at TeVatron
- Charge asymmetry at LHC (symmetric initial state)

TeVatron Results

SM Asymmetry predicition @NLO (with EW) $\approx 6\%^{[1]}$

- Inclusive cross-section consistent with SM
- Invariant mass distribution consistent with SM

Asymmetry at the LHC?

- Symmetric initial state
- Production mechanisms η dependent
- \Uparrow Asymmetry with $\Uparrow \eta$
- \Downarrow Events with $\Uparrow \eta$

Propose an indirect measurement

$$A_{\eta}^{t} = \left(rac{N^{I^{+}} - N^{I^{-}}}{N^{I^{+}} + N^{I^{-}}}
ight)_{\eta \in 2-5}$$

Asymmetry at the LHC?

- Symmetric initial state
- Production mechanisms η dependent
- \Uparrow Asymmetry with $\Uparrow \eta$
- \Downarrow Events with $\Uparrow \eta$

Propose an indirect measurement

$$egin{aligned} \mathcal{A}_{\eta}^t = \left(rac{\mathcal{N}^{\prime^+}-\mathcal{N}^{\prime^-}}{\mathcal{N}^{\prime^+}+\mathcal{N}^{\prime^-}}
ight)_{\eta\in 2-5} \end{aligned}$$

Case Study, *Ib* at 7TeV

Backgrounds generated in MadGraph. Scaled to match results/NLO Differentiate between I^- / I^+ backgrounds. $\frac{\partial \sigma}{\partial n}$ (pb), $\eta \in 2-5$

Channel	$I^{\pm}/j, b \ p_T > 20/30 GeV$	$I^{\pm}/j, b \ p_T > 20/50 GeV$
I^-b/I^+b	0.42 / 0.44	0.30 / 0.36
$W^{-}j/W^{+}j$	86 / 151	24 / 46
W^-b/W^+b	0.23 / 0.37	0.05 / 0.08
\overline{t}/t	0.11 / 0.41	0.10 / 0.34
$tW(I^-/I^+)$	0.03 / 0.03	0.03 / 0.03
Zj	8.1 / 8.1	2.7 / 2.7
Zb	0.15 / 0.15	0.04 / 0.04

- Very asymmetric backgrounds. A_n^t measurement unlikely
- Single top measurement possible!

References

- [1] J.H. Kuhn, G. Rodrigo, arXiv:hep-ph/9807420v1 [hep-ph]
- S. Westhoff, arXiv:1108.3341v1 [hep-ph]
- A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, MSTW, arXiv:0901.0002v3 [hep-ph]
- S. Frixione, P. Nason and G. Ridolfi, *Heavy-quark pair production*, arXiv:0707.3088v3 [hep-ph]
- J. M. Campbell, R. K. Ellis, *MCFM for the Tevatron and the LHC*, arXiv:1007.3492v1 [hep-ph]
- J. Alwall et al., MG5, *MadGraph 5:Going Beyond*, arXiv:1106.0522v1 [hep-ph]
- T. Sjostrand, S. Mrenna, P. Skands, *PYTHIA 8.1*, arXiv:0710.3820v1 [hep-ph]

Event generation

 $qg \rightarrow t\bar{t}$ production and $q\bar{q} \rightarrow t\bar{t}$ asymmetry are present at NLO At 7TeV, Pythia8 (LO) $\sigma_{t\bar{t}} = 94pb$ vs. ATLAS/CMS $\sigma_{t\bar{t}} \approx 160pb$

PYTHIA8(CTEQ6I) vs. POWHEG, MCFM (MSTWNLO0868cl)

- PYTHIA8 $q \bar{q}, gg
 ightarrow gg + qg$ scaled separately to MCFM result
- Discrepancy due to parton shower effects

Decay Channels

Forward detector has limited acceptance (LHCb) \Rightarrow Full reconstruction difficult

$$t\overline{t}
ightarrow W^+ b W^- \overline{b}$$

• Tag 1 charged lepton + x jets + y b-jets (y \geq 1)

Tag 2 oppositely charged leptons

e.g. *I⁻b* or *I⁻bj*

jets required to reduce backgrounds

jet charge not required

lepton charge \rightarrow top charge

Results $t\overline{t}$ ($\eta \in 2-5$)

Number of events expected in $1(fb)^{-1}$ before cuts / detector effects

Channel	7TeV	8TeV	14 TeV
lb	1398 ± 277	2503±357	18643 ± 2437
lbj	340±87	729±102	8092±1007
lbjj	48±15	121±20	2036±249
lbb	138±24	285±35	3139±377
lbbj	44±13	$111{\pm}13$	1852 ± 217
lbbjj	7±3	20±3	$515{\pm}65$
<i>I</i> + <i>I</i> -	$56{\pm}11$	100±12	$761{\pm}65$
I+I-b	24±8	52±9	535±64

Uncertainty; systematic due to scale, PDF and stat. for $1(fb)^{-1}$ Corresponds to $\sigma_{t\bar{t}} \approx 160, 220, 900$ pb for 7, 8, 14 TeV respectively

PDF Variation

POWHEG used to generate events and compare PDF, Scale variation

- CT10, NNPDF2.1, MSTW08 NLO PDF sets used
- PDF uncertainty $\approx 6\%$
- Largest PDF uncertainty on gg process (next section)

Production ratio

PDF uncertainty from using central CT10, NN2.1 and MSTW08 Scale uncertainty from independently varying μ_F , μ_R by $2^{\pm 1}$ PDF error coming from gg + qg contribution (high-x gluon) Scale uncertainty from gg + qg contribution (not converged at NLO)

$Dilution(q\bar{q})$

Charge asymmetry repulses t from q direction At a proton collider; generally $P_z(q) > P_z(\bar{q})$

$$D = \frac{N_f - N_b}{N_f + N_b}$$

 N_f - forward w.r.t. quark direction

 $D_t = 0.73$ at 7TeV. $D_t = 0.70$ at 14TeV (Bjorken Scaling) Also, symmetric contribution (stacked) from gg increases with \sqrt{s}

R. Gauld (University of Oxford)

Forward Tops

10/09/2012 16 / 16