Standard Model and Beyond (except supersymmetry)

Andrea Romanino SISSA

Outline

• The Standard Model: reminders and notations

Model-independent, bottom-up approach to physics BSM

The gauge sector: Grand Unification

• The EW sector: Composite Higgs and extra-dimensions

The SM as a renormalizable theory

The (ren) Standard Model lagrangian

- An extremely successful synthesis of particle physics
- in compact notations
- + neutrinos mass operator: LLHH

The SM fermions

- e,µ,T, V_e,V_µ,V_T, d,s,b, u,c,t (Dirac spinors)
 (notation: e_i ↔ e,µ,T, V_{ei} ↔ V_e,V_µ,V_T, d_i ↔ d,s,b, u_i ↔ u,c,t)
- A 4-component Dirac spinor Ψ has two 2-components with definite chirality (γ_5): $\Psi_{L,R} = \frac{1 \mp \gamma_5}{2} \Psi$
- A gauge symmetry can mix fields with same Lorentz quantum numbers (in particular it can act differently on Ψ_L , Ψ_R): $\Psi + \overline{\Psi} \rightarrow \Psi_L$, $\Psi_R + (\overline{\Psi})_L$, $(\overline{\Psi})_R \rightarrow \Psi_L$, $(\overline{\Psi})_L + \Psi_R$, $(\overline{\Psi})_R$ $= \underbrace{\Psi_L}_{left}, \quad \overline{\Psi_R}_{left} + \underbrace{\Psi_R}_{right}, \quad \overline{\Psi_L}_{right}$

$$\Psi = \begin{pmatrix} \epsilon \, \psi_c^* \\ \psi \end{pmatrix} \qquad \begin{array}{c} \psi^c \to L \psi_c \\ \psi \to L \psi \qquad \epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Psi_L = \begin{pmatrix} 0\\ \psi \end{pmatrix}, \overline{\Psi_R} = \begin{pmatrix} 0\\ \epsilon \psi_c \end{pmatrix} \quad (\epsilon \psi^c) \to L^{T-1}(\epsilon \psi_c)$$

Ø Vocabulary

$$\Psi_1 = \begin{pmatrix} \epsilon \, \psi_1^{c*} \\ \psi_1 \end{pmatrix} \qquad \Psi_2 = \begin{pmatrix} \epsilon \, \psi_2^{c*} \\ \psi_2 \end{pmatrix}$$

 $\overline{\Psi_1}\Psi_2 = \psi_1^c \psi_2 + (\psi_1 \psi_2^c)^* \quad \overline{\Psi_1} \gamma^\mu \Psi_2 = \psi_1^\dagger \sigma^\mu \psi_2 - (\psi_2^c)^\dagger \sigma^\mu \psi_1^c$ $\Psi_L = \Psi|_{\psi_c=0} \qquad \Psi_R = \Psi|_{\psi=0}$

 $(\psi_1\psi_2 = \psi_2\psi_1 = \psi_1^{\alpha}\epsilon_{\alpha\beta}\psi_2^{\beta})$

σ Example: most general mass term with $Ψ_1,...,Ψ_n$

$$\frac{m_{ij}}{2}\psi_i\psi_j + \text{h.c.}$$
 (gauge invariant)

Note: every theory written in terms of Dirac spinors can be written in terms of Weyl spinors, but not viceversa (e.g. if the number of Weyl spinors is odd)

Theorem: a gauge theory written in terms of Weyl spinors can be written in terms of Dirac spinors (without L and R projections) if it is Parity invariant and there is no fermion in a real representation of the gauge group

QED and QCD are parity invariant (Dirac spinors are an historical accident)

The gauge sector

 $G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$

	SU(3) _c	SU(2) _L	U(1) _Y
li	1	2	-1/2
e ^c i	1	1	1
qi	3	2	1/6
u ^c i	3*	1	-2/3
d ^c i	3*	1	1/3

Y

 $q_i = \begin{pmatrix} u_i \\ d_i \end{pmatrix}$ $l_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}$

L-handed 2-component spinors

i = 1,2,3

A nice property

- The fermion content is chiral
- A puzzle or what expected?
- Extra heavy fermions should be vectorlike (unless they get mass through EWSB)

Another nice property

- Anomaly cancellation
- So Is T_{ijk} = Tr (T_i {T_j, T_k}) = 0?
 T_i = T_A, T_a, Y

 $SU(3)^{3} \qquad \text{vectorlike}$ $SU(3)^{2} \times SU(2) \qquad \text{Tr}(\sigma_{a}) = 0$ $SU(3)^{2} \times U(1) \qquad 2Y_{q} + Y_{u^{c}} + SU(3) \times (\text{not } SU(3))^{2} \qquad \text{Tr}(\lambda_{A}) = 0$ $SU(2)^{2} \times U(1) \qquad Y_{l} + 3Y_{q}$ $U(1)^{3} \qquad 2Y_{l}^{3} + 6Y_{q}^{3} + SY_{q}^{3} + SY_{q}^{$

vectorlike $Tr(\sigma_a) = 0$ $2Y_q + Y_{u^c} + Y_{d^c} = 0$ $Tr(\lambda_A) = 0$ $Y_l + 3Y_q$ $2Y_l^3 + 6Y_q^3 + 3Y_{u^c}^3 + 3Y_{d^c}^3 + Y_{e^c}^3 = 0$ $2Y_l + 6Y_q + 3Y_{u^c} + 3Y_{d^c} + Y_{e^c} = 0$

(nice, but why??)

SM gauge interactions

From

$$D_{\mu} = \partial_{\mu} + i\frac{g}{\sqrt{2}}W_{\mu}^{+}T_{+} + i\frac{g}{\sqrt{2}}W_{\mu}^{-}T_{-} + ieQA_{\mu} + i\frac{g}{c_{W}}(T_{3} - s_{W}^{2}Q)Z_{\mu} + ig_{s}g_{\mu}^{A}T^{A}$$

$$e = gs_W = g'c_W = \frac{gg'}{\sqrt{g^2 + g'^2}}$$
 $T^{\pm} = T_1 \pm iT_2$

Tree level tests of the gauge sector

ø Fermion gauge interactions:

$$\overline{\Psi}i\hat{D}\Psi = \overline{\Psi}i\hat{\partial}\Psi - \left(\frac{g}{\sqrt{2}}j_c^{\mu}W_{\mu}^{+} + \text{h.c.}\right) - \frac{g}{c_W}j_n^{\mu}Z_{\mu} - ej_{\text{em}}^{\mu}A_{\mu} - g_s j_s^{\mu A}g_{\mu}^{A}$$
$$j_c^{\mu} = \overline{\nu_{iL}}\gamma^{\mu}e_{iL} + \overline{u_{iL}}\gamma^{\mu}d_{iL}, \quad j_n^{\mu} = \sum \overline{f_X}\gamma^{\mu}(T^3 - s_W^2Q)f_X$$
$$(f = \nu_i, e_i, u_i, d_i, X = L, R)$$

• Gauge boson self-interactions: from $-\frac{1}{4}W^a_{\mu\nu}W^{\mu\nu a} - \frac{1}{4}G^A_{\mu\nu}G^{\mu\nu A}$

 $\overline{W^a_{\mu\nu}} = \partial_{\mu}W^a_{\nu} - \partial_{\nu}W^a_{\mu} - g\epsilon_{abc}W^b_{\mu}W^c_{\nu}$ $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$

in terms of mass eigenstates:

The flavour sector

			$\bar{\Psi}_i i \gamma^{\mu}$,	$D_{\mu}\Psi_i -$	$\frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu}$	gauge
	$\mathcal{L}_{ ext{SI}}^{ ext{re}}$	$_{M}^{n} =$	$+\lambda$	$_{ij}\Psi_{i}\Psi_{j}H$	I + h.c.	flavor
			+ -	$D_{\mu}H ^2$ –	-V(H)	symmetry breaking
				family nu	mber	
	1	2	3	(horizon	ital)	
				not under	stood	
	I 1	I ₂	I ₃			
с	$(e^{c})_{1}$	$(e^{c})_{2}$	$(e^{c})_{3}$		The flavou	ur sector allows to tell ·
		(-)2	(~)5		three fam	ilies anne interactions
	0.	0.	0-		$11/2\sqrt{5}$ auro	mes. gaage merachons
	41	4 2	4 3		U(3)° Sym	metric
C	(((
	(u ^c) ₁	(u ^c) ₂	(u ^c) ₃			
С	$(d^{c})_{1}$	$(d^{c})_{2}$	(d ^c) ₃			

the

are

gauge irreps (vertical) well understood

d

U(3)⁵

$$ar{\Psi}_i i \gamma^\mu D_\mu \Psi_i - rac{1}{4} F^a_{\mu
u} F^{a\mu
u}$$
 gauge $\mathcal{L}^{
m ren}_{
m SM} = + \lambda_{ij} \Psi_i \Psi_j H +
m h.c.$ flavor $+ |D_\mu H|^2 - V(H)$ symmetry breaking

Family replication \leftrightarrow the gauge lagrangian cannot tell families \leftrightarrow is U(3)⁵ invariant:

$$egin{aligned} &L_i
ightarrow U_{ij}^L L_j \ &e_i^c
ightarrow U_{ij}^e e_j^c \ &U(3)^5: Q_i
ightarrow U_{ij}^Q Q_j \Rightarrow \mathcal{L}_{ ext{SM}}^{ ext{gauge}}
ightarrow \mathcal{L}_{ ext{SM}}^{ ext{gauge}} \ &u_i^c
ightarrow U_{ij}^{u^c} u_j^c \ &d_i^c
ightarrow U_{ij}^{d^c} d_j^c \end{aligned}$$

 $(U(3)^5 \rightarrow U(3)$ in SO(10) gauge-unified models)

$\mathcal{L}_{\rm SM}^{\rm flavor} = \lambda_{ij}^{E} e_i^c l_j H^{\dagger} + \lambda_{ij}^{D} d_i^c q_j H^{\dagger} + \lambda_{ij}^{U} u_i^c q_j H + \text{h.c.}$

U(3)⁵

$$ar{\Psi}_i i \gamma^\mu D_\mu \Psi_i - rac{1}{4} F^a_{\mu
u} F^{a\mu
u}$$
 gauge $\mathcal{L}^{
m ren}_{
m SM} = + \lambda_{ij} \Psi_i \Psi_j H + {
m h.c.}$ flavor $+ |D_\mu H|^2 - V(H)$ symmetry breaking

The flavour (Yukawa) lagrangian is is not U(3)⁵ invariant (unless $\lambda_{ij}=0$)

 $egin{aligned} &l_i
ightarrow \overline{U}_{ij}^l l_j \ &e_i^c
ightarrow U_{ij}^e e_j^c &\lambda_E
ightarrow U_{e^c}^T \lambda_E U_L & \mathcal{L}_{ ext{SM}}^{ ext{gauge}}
ightarrow \mathcal{L}_{ ext{SM}}^{ ext{gauge}} \ &U(3)^5: \; q_i
ightarrow U_{ij}^q q_j \; \Rightarrow \; \lambda_D
ightarrow U_{d^c}^T \lambda_D U_Q & \mathcal{L}_{ ext{SM}}^{ ext{SB}}
ightarrow \mathcal{L}_{ ext{SM}}^{ ext{SB}} \ &u_i^c
ightarrow U_{ij}^u u_j^c & \lambda_U
ightarrow U_{u^c}^T \lambda_U U_Q & \langle h
angle
ightarrow \langle h
angle \ &d_i^c
ightarrow U_{ij}^d d_j^c \end{aligned}$

 $\mathcal{L}_{\rm SM}^{\rm flavor} = \lambda_{ij}^{E} e_i^c l_j H^{\dagger} + \lambda_{ij}^{D} d_i^c q_j H^{\dagger} + \lambda_{ij}^{U} u_i^c q_j H + \text{h.c.}$

Accidental symmetries (ren lagrangian)

- The flavour lagrangian breaks $U(3)^5 \times U(1)_H$ to $U(1)_e \times U(1)_\mu \times U(1)_T \times U(1)_B \times U(1)_Y$
- In an appropriate flavour basis (i.e. through $U(5)^5$ transformation)

 $\lambda_{ij}^{E} e_{i}^{c} L_{j} H^{\dagger} \rightarrow \lambda_{e_{i}} e_{i}^{c'} L_{i}^{\prime} H^{\dagger}$ $\lambda_{ij}^{D} d_{i}^{c} Q_{j} H^{\dagger} \rightarrow \lambda_{d_{i}} d_{i}^{c'} Q_{i}^{\prime} H^{\dagger}$ $\lambda_{ij}^{U} u_{i}^{c} Q_{j} H \rightarrow \lambda_{u_{i}} V_{ij} u_{i}^{c'} Q_{i}^{\prime} H$

- \odot L_e L_µ L_T: individual lepton numbers
- $L = L_e + L_\mu + L_\tau$: (total) lepton number arises automatically! (at ren level)
- B: Baryon number arises automatically! (at ren level)
- (neutrino masses and mixing are a source of LFV; here they are likely to be associated to the NR part of the lagrangian)

No tree level FCNC

So Fermion masses: $H = \begin{pmatrix} 0 \\ v + \frac{h}{\sqrt{2}} \end{pmatrix}$ (unitarity gauge)

 $\mathcal{L}_{SM}^{\text{flavor}} = \lambda_{ij}^{E} e_{i}^{c} L_{j} H^{\dagger} + \lambda_{ij}^{D} d_{i}^{c} Q_{j} H^{\dagger} + \lambda_{ij}^{U} u_{i}^{c} Q_{j} H + \text{h.c.}$ $= m_{ij}^{E} e_{i}^{c} e_{j} + m_{ij}^{D} d_{i}^{c} d_{j} + m_{ij}^{U} u_{i}^{c} u_{j} + \text{h.c.} + \dots$

In terms of mass eigenstates:

 $j_{\rm c,had}^{\mu} = \overline{u}_i \sigma^{\mu} d_i = V_{ij} \overline{u}'_i \sigma^{\mu} d'_j$ $j_{\rm n,had}^{\mu} = (j_{\rm n,had}^{\mu})'$ $j_{\rm em,had}^{\mu} = (j_{\rm em,had}^{\mu})'$

 $V = U_u U_d^{\dagger}$ Cabibbo Kobayashi Maskawa (CKM) matrix

Anomalously small loop-induced FCNC

Sect:

- K⁰ K⁰ oscillations
- ⌀ Instead: 10⁶ smaller
- Because of peculiar flavour structure of the SM, or approximate U(2)⁵ symmetry of SM lagrangian
- Challenge for new physics at TeV scale

Experimental values

• In an appropriate basis

$$\lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda_{33} \end{pmatrix} + \text{small} \quad (U, D, E)$$

(the top Yukawa coupling is O(1); the bottom and tau Yukawas are also small but can be large in the MSSM)

In particular,

$$\lambda_{1,2} \ll \lambda_3$$
 $\nabla_{\mathsf{CKM}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \text{small}$

Approximate flavour symmetry

- The flavour lagrangian is approximately U(2)⁵ flavour symmetric (exactly symmetric in the limit $\lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda_{33} \end{pmatrix}$ which also implies V = 1₃)
- This (or equivalently the smallness of $\lambda_{1,2}$ and V_{ij} $i \neq j$) is the origin of the anomalously small FCNC processes in the SM (and the origin of the flavour problem)

Anomalously small loop-induced FCNC

• Because of the approximate $U(2)^5$ (GIM)

$$\frac{1}{M_W^2} \times \frac{g^4}{(4\pi)^2} \times \epsilon$$

$$\epsilon = 0 \quad \text{in the U}(2)^5 \text{ limit}$$

$$\epsilon \sim 10^{-6} \quad \text{experiment}$$

•
$$\left(\epsilon = (V_{su_i}^{\dagger} V_{u_i d}) (V_{su_j}^{\dagger} V_{u_j d}) f\left(\frac{m_{u_i}^2}{M_W^2}, \frac{m_{u_j}^2}{M_W^2}\right) \right)$$

i = 3: f = O(1), $|V_{td}V_{ts}| \ll 1$
i = 1,2: $|V_{id}V_{is}| = O(1)$, f $\ll 1$)

Challenge for new physics at TeV

Same for CP-violating effects

Electroweak symmetry breaking

- Observed" fields:
 - ${oldsymbol{o}}$ Gauge bosons: $g^A_\mu = W^a_\mu = B_\mu$
 - \bullet Femions: Q_i u_i^c d_i^c L_i e_i^c
 - "3/4" of the Higgs field: G_a (long. part of massive gauge bosons, Goldstones of the spontanously broken gauge symmetry)
 - SM masses arise from the symmetry breaking scale v = 174 GeV (G_a decay constant)
- Mission #1 of the LHC: what is the mechanism underlying EWSB?
 Or where do the G_a and v = 174 GeV come from?
- Mission accomplished: SM Higgs doublet

$$G_a + h \rightarrow H = \begin{pmatrix} G^+ \\ v + \frac{h + iG^0}{\sqrt{2}} \end{pmatrix} \approx (1, 2, \frac{1}{2})$$
 at least approximately

The Higgs sector

Most general gauge invariant ren. lagrangian for H:

 $\mathcal{L}_H = (D_\mu H)^\dagger (D^\mu H) - V(H^\dagger H)$ $V(H^\dagger H) = \mu^2 H^\dagger H + \frac{\lambda_H}{2} (H^\dagger H)^2$

 \odot $\lambda_{\rm H} > 0$

- ($\mu^2 > 0 \Rightarrow$ still electroweak symmetry breaking, but at $\Lambda \approx m_{\pi}$)

QED unbroken

Fix the Higgs quantum numbers from fermion masses. Then the electric charge is automatically conserved

$$\langle H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}, \ v > 0, \ v^2 = \frac{|\mu^2|}{\lambda_H} \approx (174 \,\text{GeV})^2 \qquad m_H^2 = 2 \,\lambda_H(v^2) \,v^2$$
$$T = aY + b_a T_a, \ a, b_a \text{ real}, \ T_a = \frac{\sigma}{2}, \ Y = \frac{1}{2}$$
$$0 = T \,\langle H \rangle = \frac{v}{2} \begin{pmatrix} b_1 - ib_2 \\ a - b_3 \end{pmatrix} \Rightarrow T \propto Q$$

Ø 3 broken generators ↔ 3 massive vectors ↔ 3 unphysical
 Goldstone bosons ↔ 1 real physical Higgs particle

Constraints on the Higgs mass I Avoiding the strong coupling regime: $m_H < O(TeV)$

- Onitarity bound: |a₀| ≤ 1
- Tree level, no Higgs: $a_0 \sim \frac{s}{16\pi v^2}$, s = (p₁+p₂)², v \approx 174 GeV

- Initarity bound saturated at s ≈ (1.2 TeV)²
- Bad behaviour of a_0 due to the longitudinal part of the W propagator ~ $p_\mu p_\nu / (M_W)^2$, cancelled by Higgs exchange

Constraints on the Higgs mass II Triviality and stability

- \odot Assume that the SM holds up to the scale Λ :

• (if $\lambda_{H}(\Lambda) < 0$, the absolute minimum of the effective potential resides at or above Λ)

The lower limit can be relaxed if we live in a metastable vacuum
 Λ » v introduces a naturalness problem

What the LHC tells us

Degrassi et al

What the LHC tells us

Degrassi et al

Constraints on the Higgs mass III Experiment

- Indirect upper limit from EW precision tests (see below):
 161 GeV @ 95% CL (assumes no new physics contributions)
- Direct experimental limit (within SM):
 122 GeV < m_H < 128 GeV @ 99% CL
 or m_H > 600 GeV (trivial combination).
 And actually: m_H = (125.5±0.5) GeV

Tests of the gauge (electroweak) sector

- The gauge sector (fermion gauge interactions) is the best tested part of the SM
 - Wide range of predictions:

g, g', v \leftrightarrow (α), s_w, v \leftrightarrow QED, W&Z masses, their selfinteractions and all fermion gauge interactions (tree level)

- Measurements at the ‰ level: sensitivity to quantum corrections (m_t, m_H)
- Good agreement with the experiment

High energy tests

- At LEP II, LEP I, SLC, Tevatron
- M_z, Γ_z,
 - \odot Z resonance in e+e- \rightarrow ff
 - $N_v = 2.9841 \pm 0.0083$: 3 light neutrinos + anomaly cancellation = 3 families
- 𝔅 M_W, Γ_W from e⁺e⁻→W⁺+W⁻ at LEP II

o $\sigma_{h,l}$

 \odot WWY, WWZ couplings \propto e, gc_W

• $A_{LR}^f = \frac{\Gamma(Z \to f_L \bar{f}_R) - \Gamma(Z \to f_R \bar{f}_L)}{\Gamma(Z \to f_L \bar{f}_R) + \Gamma(Z \to f_R \bar{f}_L)}$

⊘ A_{FB} ...

	Measurement	Fit	$ O^{meas}-O^{fit} /\sigma^{meas}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Г _z [GeV]	2.4952 ± 0.0023	2.4959	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.478	
R _I	20.767 ± 0.025	20.742	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01643	
A _I (P _τ)	0.1465 ± 0.0032	0.1480	-
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1480	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.025	80.378	
Г _w [GeV]	2.098 ± 0.048	2.092	
m _t [GeV]	173.1 ± 1.3	173.2	
March 2009	LEP EW	WG	

- Accuracy in most cases is at the ‰ level → sensitivity to 1-loop corrections, which involve
 - ⌀ g, g[′], v
 - $m_t, \alpha_s(M_Z), \Delta \alpha_{had}(M_Z)$

M_h

and bring together

- the gauge sector: $g^2/(4\pi)^2$, $g'^2/(4\pi)^2$
- \odot the flavour sector: $\lambda^2/(4\pi)^2$
- the EW-breaking sector:
 $g^2/(4π)^2 log(m_h/M_W)$
- The agreement works for relatively low values of m_h

Custodial symmetry

•
$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1 \text{ (tree level)}$$

- Not guaranteed by gauge invariance nor by the breaking pattern
- Peculiar of EW breaking by a doublet (triplets ruled out)

Reminder

$$D_{\mu} = \partial_{\mu} + igW^a_{\mu} rac{\sigma_a}{2} + irac{g}{2}B_{\mu}$$

 $W^{+}_{\mu} \equiv \frac{W^{1}_{\mu} - iW^{2}_{\mu}}{\sqrt{2}}, \ Z_{\mu} \equiv c_{W}W^{3}_{\mu} - s_{W}B_{\mu}, \ \begin{cases} c_{W} \equiv \cos\theta_{W} = g/\sqrt{g^{2} + g'^{2}}\\ s_{W} \equiv \sin\theta_{W} = g'/\sqrt{g^{2} + g'^{2}} \end{cases}$

 θ_{W} = Weinberg angle

$\rho \approx 1 \leftrightarrow (approximate) \text{ custodial SU(2)}$

 $\rho = 1$ if in the g' = 0 limit $W^{1,2,3}$ have equal mass

I.e. if a SO(3) ≈ SU(2) symmetry rotates the real fields $W^{1,2,3}$

 The custodial symmetry in the Higgs sector: the Higgs lagrangian is SO(4) symmetric, as
 |H|² = h²_{1R} + h²_{1I} + h²_{2R} + h²_{2I}.
 SO(4) is spontaneously broken to SO(3) by <h_{2R}> ≠ 0

- The custodial symmetry in the fermion sector:
 SO(4) ≈ SU(2)_L x SU(2)_R, where SU(2)_R acts on the righthanded fields
- The symmetry is exact in the limit g' = 0, $\lambda_U = \lambda_D$ → loop corrections to $\rho = 1$

Direct searches

Experimental status

- A new resonance "h" observed
 - \odot CMS: m_H = (125.3±0.6) GeV @ 5 σ
 - Atlas: m_H = (126.2±0.7) GeV @ 5σ and hV → bb (II,IV,VV) from CDF/D0

• "h" is SU(3)_c x U(1)_{em} neutral

"h" is a singlet under the custodial symmetry

"h" compatible with SM Higgs despite some deviations

ø deviations from SM not expected to be large given what we knew

Deviations from SM Higgs? (1)

- All production and decay processes are tree-level except
 - \odot main production process gg \rightarrow h
 - \oslash cleanest decay channel h $\rightarrow \gamma \gamma$
- Let those two rates free [Giardino et al, Buckley and Hooper, ...]
- Mild preference for enhanced γγ, suppressed gg
- SM looks marginal but
 - $\chi^2 \approx 19$ with 16 dofs (expect $n \pm n^{1/2}$)
 - QCD uncertainties [Baglio et al]

Deviations from SM Higgs? (2)

- Fit "h" couplings
- This assumes: SM fermions and gauge bosons + "h" and nothing else
 - contributing to the signal (e.g. heavier H)
 - entering production and decay (same production and detection channels with modified couplings)

R_t < 1?