BUSSTEPP 2012 Standard Model and Beyond Exercises

Part I The Standard Model

1 The Weyl formalism

C ONSIDER two complex doublets ψ_{α} and χ_{α} transforming as $\psi \to U\psi$, $\chi \to U\chi$ under $U \in SU(2)$ transformations. Determine the most general SU(2)-invariant bilinear involving one out of ψ and ψ^* and one out of χ and χ^* .

Assume now that ψ and χ are left-handed Lorentz spinors. The Lorentz transformations act on them through SL(2,C), the set of 2 × 2 complex matrices with unit determinant: $\psi \to L\psi$, $\chi \to L\chi$, $L \in SL(2,C)$. Determine the most general SL(2,C)-invariant bilinear involving one out of ψ and ψ^* and one out of χ and χ^* . Use the relation between $L \in SL(2,C)$ and the Lorentz transformation Λ given by $L(x_{\mu}\sigma^{\mu})L^{\dagger} = (\Lambda^{\nu}_{\mu}x_{\nu})\sigma^{\mu}$.

Consider now a system of 4 left-handed Lorentz spinors ψ_1, \ldots, ψ_4 . Determine the most general Lorentz invariant involving all the four fields (or their conjugated). You may want to use the following relation involving the Pauli matrices σ_i , i = 1, 2, 3: $\sum_i (\sigma_i)_{ab} (\sigma_i)_{cd} = 2\delta_{ad}\delta_{bc} - \delta_{ab}\delta_{cd}$.

2 The Standard Model is chiral

C onsider the left-handed fermion content of the Standard Model shown in the lectures:

	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	Y
q_i	3	2	1/6
u_i^c	$\overline{3}$	1	-2/3
d_i^c	$\overline{3}$	1	1/3
l_i	1	2	-1/2
e_i^c	1	1	1

Remembering that the most generic mass term one can build out of the Weyl fermions ψ_1, \ldots, ψ_n is $m_{ij}\psi_i\psi_j/2 + \text{h.c.}$, show that no gauge invariant mass

term is allowed in the Standard Model.

3 The effective four-fermion Fermi operator

C onsider the neutrino scattering process $\nu_{\mu}e \rightarrow \mu\nu_{e}$. Derive the fourfermion effective lagrangian density describing that process at energies much smaller than the W mass (in the Dirac formalism).

What is the parametric dependence of the cross section σ on the center of mass energy of the process E for $E \ll M_W$ and $E \gg M_W$?

4 Higgs decay into W^+W^-

 \prod HE Higgs doublet can be written in the unitary gauge as

$$H = \begin{pmatrix} 0\\ v + \frac{h}{\sqrt{2}} \end{pmatrix},$$

where h is the physical Higgs field and $v = \sqrt{2}M_W/g$ (g is the SU(2)_L coupling).

- Write the hW^+W^- Lagrangian interaction term responsible of the Higgs decay into W^+W^- .
- Calculate the total Higgs decay width into W^+W^- at the tree level.
- In the limit in which the hypercharge $U(1)_Y$ gauge coupling is negligible, how are the decay widths into W^+W^- and ZZ bosons related?

5 The custodial symmetry

Suppose the SM Higgs was an SU(2) triplet with hypercharge Y_H and the Higgs potential generates a vacuum expectation value for the Higgs. What would be the values of Y_H allowing $Q = T_3 + Y$ to be conserved? What would be the values of Y_H in which all generators of SU(2)×U(1) are broken except those proportional to Q? Suppose that $Y_H = 1$ and that the Higgs obtains a vev that indeed does not break Q. Calculate the gauge boson masses generated by the Higgs gauge couplings. What would be the tree-level value of the ρ parameter?

6 The Higgs potential

S TARTING from the Higgs potential shown in the lectures, $V(H) = -\mu^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2/2$ and using the unitary gauge shown in exercise 4, recover the Higgs potential for the physical degree of freedom h and in particular its mass.