BUSSTEPP

Neutrino physics II: Neutrino Oscillation Phenomenology

Thomas Schwetz-Mangold

Max-Planck-Institut für Kernphysik Heidelberg, Germany

Durham, UK, Sept 2012

Outline

Lepton mixing

Neutrino oscillations

Oscillations in vacuum Oscillations in matter Varying matter density and MSW

Global data and 3-flavour oscillations The θ_{13} revolution

Outlook CPV, mass hierarchy

Outline

Lepton mixing

Neutrino oscillations Oscillations in vacuum Oscillations in matter Varying matter density and MSW

Global data and 3-flavour oscillations The θ_{13} revolution

Dutlook CPV, mass hierarchy

Flavour neutrinos

A neutrino of flavour α is defined by the charged current interaction with the corresponding charged lepton:

$$\mathcal{L}_{\mathrm{CC}} = -\frac{g}{\sqrt{2}} W^{
ho} \sum_{\alpha = e, \mu, \tau} \bar{\nu}_{\alpha L} \gamma_{
ho} \ell_{\alpha L} + \mathrm{h.c.}$$

for example

$$\pi^+ \to \mu^+ \nu_\mu$$

the muon neutrino u_{μ} comes together with the charged muon μ^+

Flavour neutrinos

A neutrino of flavour α is defined by the charged current interaction with the corresponding charged lepton:

$$\mathcal{L}_{\mathrm{CC}} = -\frac{g}{\sqrt{2}} W^{
ho} \sum_{lpha = e, \mu, \tau} \bar{\nu}_{lpha L} \gamma_{
ho} \ell_{lpha L} + \mathrm{h.c.}$$

for example

$$\pi^+ \to \mu^+ \nu_\mu$$

the muon neutrino u_{μ} comes together with the charged muon μ^+

Flavour neutrinos

Let's give mass to the neutrinos

Majorana mass term:

$$\mathcal{L}_{\mathrm{M}} = -\frac{1}{2} \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}^{T} C^{-1} \mathcal{M}_{\alpha\beta} \nu_{\beta L} + \mathrm{h.c.}$$

 \mathcal{M} : symmetric mass matrix

In the basis where the CC interaction is diagonal the mass matrix is in general not a diagonal matrix

any complex symmetric matrix $\mathcal M$ can be diagonalised by a unitary matrix

 $U_{\nu}^{T}\mathcal{M}U_{\nu}=m, \qquad m: \text{ diagonal}, \ m_{i}\geq 0$

Lepton mixing

Lepton mixing

$$\begin{split} \mathcal{L}_{\mathrm{CC}} &= -\frac{g}{\sqrt{2}} W^{\rho} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3} \bar{\nu}_{iL} U^{*}_{\alpha i} \gamma_{\rho} \boldsymbol{\ell}_{\alpha L} + \mathrm{h.c.} \\ \mathcal{L}_{\mathrm{M}} &= -\frac{1}{2} \sum_{i=1}^{3} \nu^{T}_{iL} C^{-1} \nu_{iL} m^{\nu}_{i} - \sum_{\alpha=e,\mu,\tau} \bar{\ell}_{\alpha R} \boldsymbol{\ell}_{\alpha L} m^{\ell}_{\alpha} + \mathrm{h.c.} \end{split}$$

The unitary lepton mixing matrix:

Outline

Lepton mixing

Neutrino oscillations

Oscillations in vacuum Oscillations in matter Varying matter density and MSW

Global data and 3-flavour oscillations The θ_{13} revolution

Outlook CPV, mass hierarchy

Neutrino oscillations

Neutrino oscillations in vacuum

oscillation amplitude:

 $\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \langle \nu_{\beta} | \text{ propagation } | \nu_{\alpha} \rangle$ $= \sum_{i,j} U_{\beta j} \langle \nu_{j} | e^{-i(E_{i}t - p_{i}x)} | \nu_{i} \rangle U_{\alpha i}^{*} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i}x)}$

Neutrino oscillations in vacuum

oscillation amplitude:

$$\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \langle \nu_{\beta} | \text{ propagation } | \nu_{\alpha} \rangle$$
$$= \sum_{i,j} U_{\beta j} \langle \nu_{j} | e^{-i(E_{i}t - p_{i}x)} | \nu_{i} \rangle U_{\alpha i}^{*} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i}x)}$$

oscillation probability:

$$P_{
u_{lpha} o
u_{eta}} = \left| \mathcal{A}_{
u_{lpha} o
u_{eta}}
ight|^2$$

Neutrino oscillations in vacuum

oscillation amplitude:

$$\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \langle \nu_{\beta} | \text{ propagation } | \nu_{\alpha} \rangle$$
$$= \sum_{i,j} U_{\beta j} \langle \nu_{j} | e^{-i(E_{i}t - p_{i} \times)} | \nu_{i} \rangle U_{\alpha i}^{*} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i} \times)}$$

oscillation probability:

$$P_{
u_{lpha}
ightarrow
u_{eta}} = \left| \mathcal{A}_{
u_{lpha}
ightarrow
u_{eta}}
ight|^2$$

To derive the oscillation probability rigorously one needs either a wave-packet treatment or field theory Akhmedov, Kopp, JHEP 1004:008 (2010) [1001.4815]

The oscillation probability in vacuum

$$\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i}x)}$$
$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{jk} U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k} \exp\left[-i\frac{\Delta m_{k j}^{2}L}{2E_{\nu}}\right]$$

 $\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$: oscillations are sensitive only to mass-squared differences (not to absolute mass!)

to observe oscillations one needs

- non-trivial mixing $U_{\alpha i}$
- non-zero mass-squared differences Δm_{ki}^2
- a suitable value for L/E_{ν}

2-neutrino oscillations

Two-flavour limit:

$$U = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right) ,$$

$$P = \sin^2 2\theta \, \sin^2 \frac{\Delta m^2 L}{4E_{\nu}}$$

2-neutrino oscillations

Two-flavour limit:

$$U = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right) ,$$

$$P = \sin^2 2\theta \, \sin^2 \frac{\Delta m^2 L}{4E_\nu}$$

$$\frac{\Delta m^2 L}{4E_{\nu}} = 1.27 \frac{\Delta m^2 [\mathrm{eV}^2] \, L[\mathrm{km}]}{E_{\nu} [\mathrm{GeV}]}$$

Appearance vs. disappearance

appearance experiments:

$$\mathsf{P}_{\nu_{\alpha} \to \nu_{\beta}} , \qquad \alpha \neq \beta$$

"appearance" of a neutrino of a new flavour $\beta \neq \alpha$ in a beam of ν_{α}

disappearance experiments:

 $P_{\nu_{\alpha} \to \nu_{\alpha}}$

measurement of the "survival" probability of a neutrino of given flavour

Neutrinos oscillate!

General properties of vacuum oscillations

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{jk} U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k} \exp\left[-i \frac{\Delta m_{k j}^{2} L}{2 E_{\nu}}\right]$$

- Unitarity: $\sum_{\beta} P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = 1$
- ▶ For anti-neutrinos replace $U_{\alpha i} \rightarrow U^*_{\alpha i}$
- $P_{\nu_{\alpha} \to \nu_{\beta}} = P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$ (CPT invariance)
- ▶ Phases in *U* induce CP violation: $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} \neq P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$
- ▶ there is no CP violation in disappearance experiments:

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha}} = \sum_{k,j} |U_{\alpha k}|^2 |U_{\alpha j}|^2 e^{-i\Delta m_{kj}^2 L/2E}$$

Eff. Schrödinger equation

The evolution of the flavour state can be described by an effective Schrödinger equation:

$$i\frac{d}{dt}\left(\begin{array}{c}a_{e}\\a_{\mu}\\a_{\tau}\end{array}\right)=H_{\rm vac}\left(\begin{array}{c}a_{e}\\a_{\mu}\\a_{\tau}\end{array}\right)$$

where

$$\begin{aligned} H_{\rm vac}^{\nu} &= U {\rm diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} \\ H_{\rm vac}^{\bar{\nu}} &= U^* {\rm diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\intercal} \end{aligned}$$

The matter effect

When neutrinos pass through matter the interactions with the particles in the background induce an effective potential for the neutrinos

The coherent forward scattering amplitude leads to an index of refraction for neutrinos

L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); ibid. D 20, 2634 (1979)

Effective Hamiltonian in matter

$$H_{\text{mat}}^{\nu} = U \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} + \text{diag}(\sqrt{2}G_F N_e, 0, 0)$$
$$H_{\text{mat}}^{\bar{\nu}} = \underbrace{U^* \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\intercal}}_{H_{\text{vac}}} - \underbrace{\text{diag}(\sqrt{2}G_F N_e, 0, 0)}_{V_{\text{mat}}}$$

$N_e(x)$: electron density along the neutrino path

matter effect introduces "environmental" CP violation (even for real U and in disappearance experiments)

for non-constant matter the Hamiltonian depends on time:

$$i\frac{d}{dt}a = H_{\rm mat}(t)a$$

Effective Hamiltonian in matter

$$H_{\text{mat}}^{\nu} = U \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} + \text{diag}(\sqrt{2}G_F N_e, 0, 0)$$
$$H_{\text{mat}}^{\bar{\nu}} = \underbrace{U^* \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\intercal}}_{H_{\text{vac}}} - \underbrace{\text{diag}(\sqrt{2}G_F N_e, 0, 0)}_{V_{\text{mat}}}$$

 $N_e(x)$: electron density along the neutrino path matter effect introduces "enviromental" CP violation (even for real U and in disappearance experiments)

for non-constant matter the Hamiltonian depends on time:

$$i\frac{d}{dt}a = H_{\rm mat}(t)a$$

Effective Hamiltonian in matter

$$H_{\text{mat}}^{\nu} = U \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\dagger} + \text{diag}(\sqrt{2}G_F N_e, 0, 0)$$
$$H_{\text{mat}}^{\bar{\nu}} = \underbrace{U^* \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) U^{\intercal}}_{H_{\text{vac}}} - \underbrace{\text{diag}(\sqrt{2}G_F N_e, 0, 0)}_{V_{\text{mat}}}$$

 $N_e(x)$: electron density along the neutrino path

matter effect introduces "environmental" CP violation (even for real U and in disappearance experiments)

for non-constant matter the Hamiltonian depends on time:

$$i\frac{d}{dt}a = H_{\rm mat}(t)a$$

Effective matter potential - 1

Effective 4-point interaction Hamiltonian in the SM

$$H_{\rm int}^{\nu_{\alpha}} = \frac{G_F}{\sqrt{2}} \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\alpha} \underbrace{\sum_{f} \bar{f} \gamma^{\mu} (g_V^{\alpha, f} - g_A^{\alpha, f} \gamma_5) f}_{J_{\rm mat}^{\mu}}$$

ordinary matter: e^- , p, n

non-relativistic:
$$\langle \bar{f} \gamma^{\mu} f \rangle = \frac{1}{2} N_f \delta_{\mu 0}$$
unpolarised: $\langle \bar{f} \gamma_5 \gamma^{\mu} f \rangle = 0$ neutral: $N_e = N_p$

Effective matter potential - 2

$$V_{\text{mat}} = \sqrt{2}G_F \text{diag}\left(N_e - N_n/2, -N_n/2, -N_n/2\right)$$

• only ν_e feel CC (there are no μ, τ in normal matter)

- ► NC is the same for all flavours ⇒ potential proportional to identiy has no effect on the evolution
- NC has no effect for 3-flavour active neutrinos, but is important in the presence of sterile neutrinos

Neutrino oscillations in constant matter

diagonalize the Hamiltonian in matter:

$$\begin{aligned} \mathcal{H}_{\mathrm{mat}}^{\nu} &= \mathcal{U}\mathrm{diag}\left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}}\right)\mathcal{U}^{\dagger} + \mathrm{diag}(\sqrt{2}G_F N_e, 0, 0) \\ &= \mathcal{U}_m\mathrm{diag}\left(\lambda_1, \lambda_2, \lambda_3\right)\mathcal{U}_m^{\dagger} \end{aligned}$$

Same expression for oscillation probability, but replace "vacuum" parameters by "matter" parameters

2-neutrino oscillations in constant matter

Two-flavour case:

$$P_{\rm mat} = \sin^2 2\theta_{\rm mat} \, \sin^2 rac{\Delta m_{
m mat}^2 L}{4E}$$

with

$$\sin^2 2\theta_{\text{mat}} = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - A)^2}$$
$$\Delta m_{\text{mat}}^2 = \Delta m^2 \sqrt{\sin^2 2\theta + (\cos 2\theta - A)^2}$$
$$A \equiv \frac{2EV}{\Delta m^2}$$

2-neutrino oscillations in constant matter

$$\sin^2 2\theta_{\rm mat} = rac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - A)^2} \qquad A \equiv rac{2EV}{\Delta m^2}$$

resonance for $\cos 2\theta = A$: "MSW resonance" Mikheev, Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

Varying matter density: example solar neutrinos

The electron density in the sun:

evolution is adiabatic if

$$\left(\frac{1}{\theta_m}\frac{d\theta_m}{dx}\right)^{-1} \gg L_{\rm osc}$$

using $\Delta m^2 = 8 \times 10^{-5} \ \text{eV}^2$ the oscillation length is

$$L_{
m osc} = rac{4\pi E}{\Delta m^2} \simeq 30 \, {
m km} \left(rac{E}{
m MeV}
ight)$$

for large mixing angles (sin² $\theta_{12} \simeq 0.3$):

$$\left(\frac{1}{\theta_m}\frac{d\theta_m}{dx}\right)^{-1} \sim \left(\frac{1}{V}\frac{dV}{dx}\right)^{-1} \sim \text{size of sun} \gg 30 \, \text{km}$$

\Rightarrow adiabatic evolution

the electron neutrino is born at the center of the sun as

 $|\nu_e\rangle = \cos\theta_m |\nu_1\rangle + \sin\theta_m |\nu_2\rangle$

then $|
u_1\rangle$ and $|
u_2\rangle$ evolve adiabatically to the Earth

 $P_{ee} = P_{e1}^{\text{prod}} P_{1e}^{\text{det}} + P_{e2}^{\text{prod}} P_{2e}^{\text{det}}$ $P_{e3}^{\text{prod}} \approx \sin^2 \theta_{13} \approx 0, \text{ interference term averages out}$ $P_{e1}^{\text{prod}} = \cos^2 \theta_m, \quad P_{1e}^{\text{det}} = \cos^2 \theta$ $P_{e2}^{\text{prod}} = \sin^2 \theta_m, \quad P_{2e}^{\text{det}} = \sin^2 \theta$ $\Rightarrow \quad P_{ee} = \cos^2 \theta_m \cos^2 \theta + \sin^2 \theta_m \sin^2 \theta$

in the center of the sun we have

$$A \equiv \frac{2EV}{\Delta m^2} \simeq 0.2 \left(\frac{E_{\nu}}{\text{MeV}}\right) \left(\frac{8 \times 10^{-5} \,\text{eV}^2}{\Delta m^2}\right)$$

resonance occurs for

 $A = \cos 2\theta = 0.4$

$$\Rightarrow E_{\rm res} \simeq 2 \,{\rm MeV}$$

LMA-MSW and the solar neutrino spectrum

Evidence for LMA-MSW

Measurements of the solar neutrino rate at SNO and Borexino

Borexino, 1110.3230

$\sin^2\theta < 0.5$ is strong evidence for MSW conversion

Outline

Lepton mixing

Neutrino oscillations Oscillations in vacuum Oscillations in matter Varying matter density and MSW

Global data and 3-flavour oscillations The θ_{13} revolution

Outlook CPV, mass hierarchy

Global data on neutrino oscillations

from various neutrino sources and vastly different energy and distance scales:

- global data fits nicely with the 3 neutrinos from the SM
- a few "anomalies" at 2-3 σ: LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar neutrino spectrum

3-flavour oscillation parameters

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3-flavour oscillation parameters

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
$$\Delta m_{31}^{2} \qquad \qquad \Delta m_{21}^{2}$$
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$atm + LBL(dis) \qquad react + LBL(app) \qquad solar + Kam LAND$$

3-flavour effects are suppressed: $\Delta m_{21}^2 \ll \Delta m_{31}^2$ and $\theta_{13} \ll 1$ ($U_{e3} = s_{13}e^{-i\delta}$) \Rightarrow dominant oscillations are well described by effective two-flavour oscillations \Rightarrow CP-violation is suppressed by θ_{13}

The dominating oscillation modes

- ► solar neutrinos Homestake, SAGE+GNO, Super-K, SNO, Borexino $\nu_e \rightarrow \nu_{\mu,\tau}$ LMA-MSW, $\Delta m^2 \sim 7 \times 10^{-5} \text{eV}^2$
- Kamland reactor experiment (180 km) $\bar{\nu}_e$ disappearance with $E_{\nu}/L \sim 7 \times 10^{-5} \text{eV}^2$

$$\sin^2\theta_{12} = 0.3^{+0.13}_{-0.12}$$

The dominating oscillation modes

- ► solar neutrinos Homestake, SAGE+GNO, Super-K, SNO, Borexino $\nu_e \rightarrow \nu_{\mu,\tau}$ LMA-MSW, $\Delta m^2 \sim 7 \times 10^{-5} \text{eV}^2$
- Kamland reactor experiment (180 km) $\bar{\nu}_e$ disappearance with $E_{\nu}/L \sim 7 \times 10^{-5} \text{eV}^2$
- atmospheric neutrinos Super-Kamiokande long-baseline accelerator experiments K2K (250 km), MINOS (735 km) $\nu_{\mu} \rightarrow \nu_{\mu}$ disapp. with $E_{\nu}/L \sim 2 \times 10^{-3} \text{eV}^2$

$$\sin^2 \theta_{12} = 0.3^{+0.13}_{-0.12} \qquad \sin^2 \theta_{23} = 0.42^{+0.03}_{-0.03}$$

Two possibilities for the neutrino mass spectrum

▶ We know that the mass state containing most of ν_e is the lighter of the two "solar mass" states: $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 > 0$, $\theta_{12} < 45^\circ$ matter resonance in the sun: $\Delta m_{21}^2 \cos 2\theta_{12} = 2E_\nu V \Rightarrow \Delta m_{21}^2 \cos 2\theta_{12} > 0$

▶ We do not know the sign of Δm_{31}^2 (normal or inverted ordering) No matter effect has been observed for oscillations with Δm_{31}^2 , only "vacuum" $\nu_{\mu} \rightarrow \nu_{\mu}(\nu_{\tau})$ oscillations: $P_{\mu\mu} \approx 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E}$ Has to look for matter effect in $\nu_e \leftrightarrow \nu_{\mu}$ due to $\Delta m_{31}^2, \theta_{13}$

T. Schwetz (MPIK)

Two possibilities for the neutrino mass spectrum

- ▶ We know that the mass state containing most of ν_e is the lighter of the two "solar mass" states: $\Delta m_{21}^2 \equiv m_2^2 m_1^2 > 0$, $\theta_{12} < 45^\circ$ matter resonance in the sun: $\Delta m_{21}^2 \cos 2\theta_{12} = 2E_\nu V \Rightarrow \Delta m_{21}^2 \cos 2\theta_{12} > 0$
- ▶ We do not know the sign of Δm_{31}^2 (normal or inverted ordering) No matter effect has been observed for oscillations with Δm_{31}^2 , only "vacuum" $\nu_{\mu} \rightarrow \nu_{\mu}(\nu_{\tau})$ oscillations: $P_{\mu\mu} \approx 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E}$ Has to look for matter effect in $\nu_e \leftrightarrow \nu_{\mu}$ due to $\Delta m_{31}^2, \theta_{13}$

Effects of θ_{13}

transitions of ν_e involving Δm_{31}^2 :

- $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disappearance reactor experiments
- ► long-baseline accelerator experiments looking for $\nu_{\mu} \rightarrow \nu_{e}$ appearance

Reactor experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E_{\nu}}$$

Reactor experiments

$$P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E_{\nu}} - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \frac{\Delta m_{21}^{2} L}{4E_{\nu}}$$

• experiments at $\sim 1 \text{ km}$ provide "clean" measurment of $\sin^2 2\theta_{13}$ • up to last year: $\sin^2 2\theta_{13} \lesssim 0.1$ dominated by the CHOOZ reactor exp.

T. Schwetz (MPIK)

June 2011: T2K data on $\nu_{\mu} \rightarrow \nu_{e}$ appearance

search for $u_{\mu} \rightarrow \nu_{e}$ oscillations with L=295 km and $E_{\nu}\simeq 0.7$ GeV

June 2011: T2K data on $\nu_{\mu} \rightarrow \nu_{e}$ appearance

search for $u_{\mu} \rightarrow \nu_{e}$ oscillations with L = 295 km and $E_{\nu} \simeq 0.7$ GeV

K. Abe et al., 1106.2822 6 events obs, 1.5 ± 0.3 exp for $\theta_{13} = 0$ 2.5σ indication for $\theta_{13} > 0$

Kobayashi @ ICHEP 2012 11 obs, 3.2 ± 0.4 exp for $\theta_{13} = 0$ 3.2σ indication for $\theta_{13} > 0$

The LBL appearance oscillation probability

 θ_{13} correlated with other parameters, especially δ , sgn(Δm_{31}^2), θ_{23}

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2(1-A)\Delta}{(1-A)^2} + \sin 2\theta_{13} \hat{\alpha} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\Delta + \delta_{\rm CP}) + \hat{\alpha}^2 \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A^2}$$

with $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}}, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin 2\theta_{12}, \quad A \equiv \frac{2E_{\nu}V}{\Delta m_{31}^2}$ anti- ν : $\delta_{\rm CP} \rightarrow -\delta_{\rm CP}, A \rightarrow -A, P_{e\mu}$: $\delta_{\rm CP} \rightarrow -\delta_{\rm CP}$ other hierarchy: $\Delta \rightarrow -\Delta, A \rightarrow -A, \hat{\alpha} \rightarrow -\hat{\alpha}$

T2K and MINOS data on $\nu_{\mu} \rightarrow \nu_{e}$ appearance

New generation of θ_{13} reactor experiments

New generation of θ_{13} reactor experiments

New generation of θ_{13} reactor experiments

naive comb.: $\sin^2 2\theta_{13} = 0.098 \pm 0.013 \ (\chi^2 = 0.6/2 \ dof)$

 θ_{13} global fit

 $\theta_{13} = (8.7 \pm 0.04)^o$

 $\Delta\chi^2(\theta_{13}=0)\approx 100$

Gonzalez-Garcia, Maltoni, Salvado, TS, in prep.

Outline

Lepton mixing

Neutrino oscillations Oscillations in vacuum Oscillations in matter Varying matter density and MSW

Global data and 3-flavour oscillations The θ_{13} revolution

Outlook CPV, mass hierarchy

• measure the value of δ_{CP} \Rightarrow establish CP violation

• determine the neutrino mass hierarchy, i.e. $sgn(\Delta m_{31}^2)$

- measure the value of $\delta_{CP} \Rightarrow$ establish CP violation measure $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}$ vs $P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$ cross section and fluxes are different for ν and $\bar{\nu}$, matter effect is CP violating
- determine the neutrino mass hierarchy, i.e. $sgn(\Delta m_{31}^2)$

- ► measure the value of $\delta_{CP} \Rightarrow$ establish CP violation measure $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}$ vs $P_{\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}}$ cross section and fluxes are different for ν and $\overline{\nu}$, matter effect is CP violating
- ▶ determine the neutrino mass hierarchy, i.e. sgn(△m²₃₁) observe matter effect atmospheric neutrinos, long-baseline experiments (L ≥ 1000 km)

- measure the value of $\delta_{CP} \Rightarrow$ establish CP violation measure $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}$ vs $P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$ cross section and fluxes are different for ν and $\bar{\nu}$, matter effect is CP violating
- ▶ determine the neutrino mass hierarchy, i.e. sgn(△m²₃₁) observe matter effect atmospheric neutrinos, long-baseline experiments (L ≥ 1000 km)

Those effects are suppressed by θ_{13} . The recently discovered "large" θ_{13} value makes searches for them realistic!

- measure the value of $\delta_{CP} \Rightarrow$ establish CP violation measure $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}$ vs $P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$ cross section and fluxes are different for ν and $\bar{\nu}$, matter effect is CP violating
- ▶ determine the neutrino mass hierarchy, i.e. sgn(△m²₃₁) observe matter effect atmospheric neutrinos, long-baseline experiments (L ≥ 1000 km)

Those effects are suppressed by θ_{13} . The recently discovered "large" θ_{13} value makes searches for them realistic!

test the three-flavour picture and search for deviations light sterile neutrinos, non-unitarity, non-standard neutrino interactions,...

Determination of the mass hierarchy

the vacuum $u_{\mu}
ightarrow
u_{e}$ probability is invariant under

$$\Delta m^2_{31}
ightarrow -\Delta m^2_{31} \qquad \delta_{
m CP}
ightarrow \pi - \delta_{
m CP}$$

 \rightarrow the key to resolve the hierarchy degeneracy is the matter effect resonance condition for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

$$\pm \frac{2EV}{\Delta m_{31}^2} = \cos 2\theta_{13} \approx 1$$

can be fulfilled for neutrinos if $\Delta m_{31}^2 > 0$ (normal hierarchy) anti-neutrinos if $\Delta m_{31}^2 < 0$ (inverted hierarchy)

The size of the matter effect

$$A \equiv \left| \frac{2EV}{\Delta m_{31}^2} \right| \simeq 0.09 \, \left(\frac{E}{\text{GeV}} \right) \left(\frac{|\Delta m_{31}^2|}{2.5 \times 10^{-3} \, \text{eV}^2} \right)^{-1}$$

for experiments at the 1st osc. max, $|\Delta m^2_{31}|L/2E\simeq\pi$, and

$$A \simeq 0.02 \, \left(\frac{L}{100 \, \mathrm{km}} \right)$$

need $L \gtrsim 1000$ km and $E_{\nu} \gtrsim 3$ GeV in order to reach the regime of strong matter effect $A \gtrsim 0.2$.

terms linear in A do not break the degeneracy \rightarrow have to be sensitive to higher order terms in A TS, hep-ph/0703279

Subsequent generation of LBL experiments

- superbeam upgardes
- beta beams
- neutrino factory

under intense study e.g. EURO ν http://www.euronu.org NF-IDS http://www.ids-nf.org