Beyond the SM

Many reasons to go beyond the SM

- Experimental "problems" of the SM
 - Gravity
 - Dark matter
 - Baryon asymmetry
- Experimental "hints" of physics beyond the SM
 - Neutrino masses
 - Quantum number unification
- Theoretical puzzles of the SM
 - @ <H> « Mpl
 - Family replication
 - Small Yukawa couplings, pattern of masses and mixings
 - 6 Gauge group, no anomaly, charge quantization, quantum numbers
- Theoretical problems of the SM
 - Naturalness problem
 - Cosmological constant problem
 - Strong CP problem
 - Landau poles

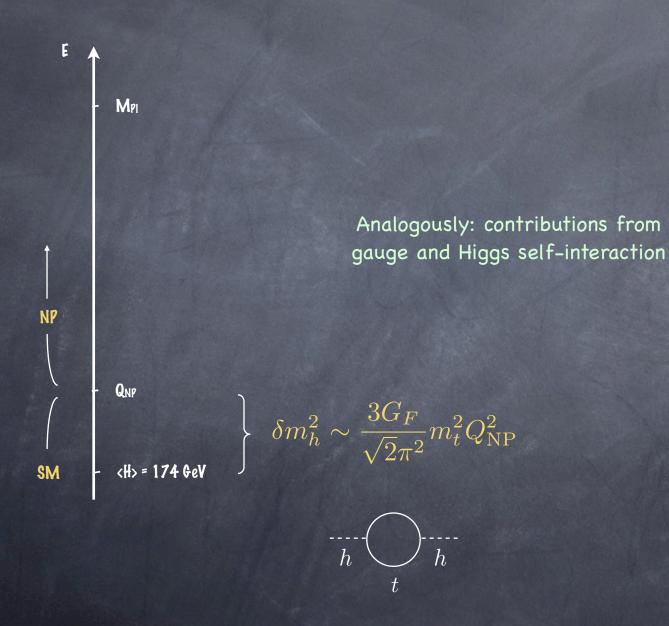
The naturalness argument

Known fields:
$$g_A^\mu$$
 W_a^μ B^μ Q_i u_i^c d_i^c L_i e_i^c G_a h

- A scalar field!
 - $om_h^2 \approx (m_h^2)_0 + (125 GeV)^2 (Q_{NP}/0.5 TeV)^2$

- QNP » TeV needs delicate cancellations, therefore either
 - \bullet NP @ TeV cuts-off δm^2_h or
 - the electroweak scale is accidentally smaller than expected

Naturalness



More on renormalizability and naturalness

$$\delta m_h^2 \sim \delta m_h^2 (\text{top}) \approx \frac{1}{h} \left(\frac{1}{h} \right) = 12 \lambda_t^2 \int \frac{k^3 dk}{8\pi^2} \frac{1}{k^2} + \dots \xrightarrow{\text{cut-off}} \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q^2$$

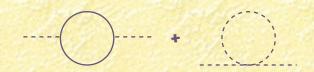
Renormalization:
$$(m_h^2)_{
m phys} pprox (m_h^2)_{
m tree} + rac{3G_{
m F}}{\sqrt{2}\pi^2} m_t^2 Q^2, \quad Q o \infty$$

The naturalness problem arises if Q corresponds to a physical threshold

Another caveat: the cosmological constant problem

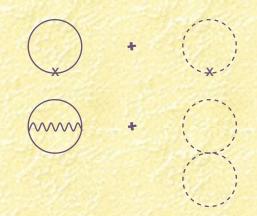
$$\delta m_H^2 \propto Q_{\rm NP}^2 \to Q_{\rm NP} \sim m_H$$

SUSY: $\delta m_H^2 \propto \tilde{m}^2 \log \frac{Q_{\rm SUSY}}{\tilde{m}}$



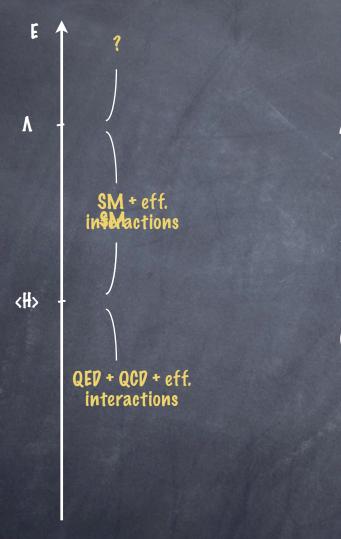
$$\delta\Lambda \propto Q_x^4 \to Q_x \sim 10^{-3} \, \text{eV}???$$

SUSY:
$$\delta \Lambda \propto \tilde{m}^2 Q_{\rm SUSY}^2$$



The SM as an effective theory

The SM as an effective theory



Analogously..

$$\mathcal{L}_{E\ll\Lambda}^{ ext{eff}}=\mathcal{L}_{ ext{SM}}^{ ext{ren}}+\mathcal{L}_{ ext{SM}}^{ ext{NR}}$$

(in the limit $\Lambda \gg M_Z$)

The SM as an effective theory

$$\mathcal{L}_{E\ll\Lambda}^{ ext{eff}} = \mathcal{L}_{ ext{SM}}^{ ext{ren}} + \sum_{n} rac{c_n}{\Lambda^n} \, \mathcal{O}_{4+n}$$

- \odot Consistent renormalization at each order in (E/Λ)
- Low E effects suppressed by $(E/\Lambda)^n$ (ren.bility not fundamental in 4D QFT?)
- \odot Allows a general parameterization of any new physics at Λ » E in terms of light fields only ("indirect effects")
- Identification of O⁽ⁿ⁾ allows to understand the underlying physics (example: from Fermi theory to SM)
- No clear hint of $O^{(n)}$ from the TeV scale (only hint: neutrino masses)

Best chance for indirect NP effects to emerge is if they violate symmetries \mathcal{L}_{SM}^{ren} , also called "accidental symmetries": L_i, B

 ${\color{blue} {\mathfrak o}}$ NP effects can also emerge if are suppressed in the presence of ${\color{blue} {\mathcal L}}_{\rm SM}^{\rm ren}$ only, e.g. if they contribute to

Flavour Changing Neutral Current (FCNC) processes

CP-violating (CPV) processes

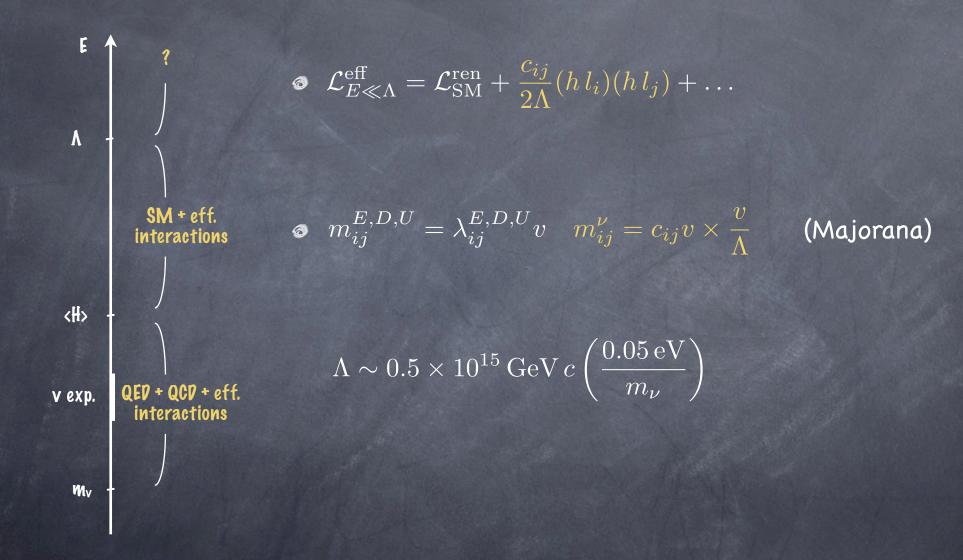
Electroweak precision tests (EWPT)

Lepton number violating operators

The SM effective lagrangian happens to contain only a single dimension 5 operator, which happens to violate lepton number: the "Weinberg operator"

$$\mathcal{L}_{E\ll\Lambda}^{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}}^{\mathrm{ren}} + rac{c_{ij}}{2\Lambda}(h\,l_i)(h\,l_j) + \dots$$

Neutrino masses



Summing up:

Assume:

 \odot The origin of neutrino masses is at $\Lambda \gg M_Z$

Then:

- Whatever is the origin, neutrino masses are described in a model-independent way by the (LH)(LH) term in the SM effective lagrangian (caveat: higher-dim operators)
- In particular, there are only three light neutrinos with Majorana masses

But:

© Could not V have a light V^c partner as all other SM fermions?

Right-handed neutrinos

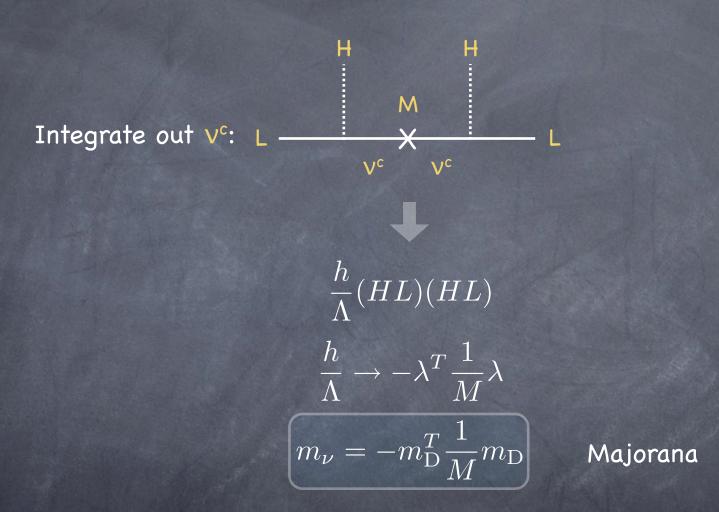
$$\begin{pmatrix} u \\ d \end{pmatrix}$$
 $\begin{pmatrix} u^c \\ d^c \end{pmatrix}$ $\begin{pmatrix} v \\ e \end{pmatrix}$ $\begin{pmatrix} v^c \\ e^c \end{pmatrix}$ SU(3)_c x SU(2)_w x U(1)_Y

$$\lambda_{
u} \nu_{c} LH
ightarrow m_{
u} = \lambda_{
u} v$$
 (like the other fermions)

 v_c is a SM singlet and can therefore be heavy

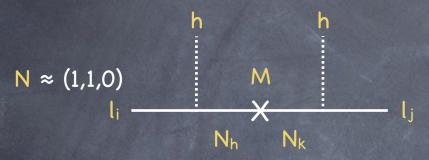
$${\cal L}_{
m HE} \supset -rac{M}{2}
u^c
u^c$$
 (unlike the other fermions)

See-saw



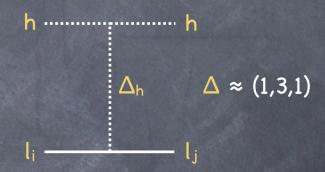
Renormalizable origin of neutrino masses

$$\mathcal{L}_{E\ll\Lambda}^{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}}^{\mathrm{ren}} + \frac{c_{ij}}{2\Lambda}(h\,l_i)(h\,l_j) + \dots$$



See-saw type I

See-saw type II



$$T \approx (1,3,0) \qquad \frac{h}{M} \qquad \frac{h}{T_h} \qquad \frac{h}{T_k}$$

See-saw type III

(Any number of N_h , T_h , Δ_h)

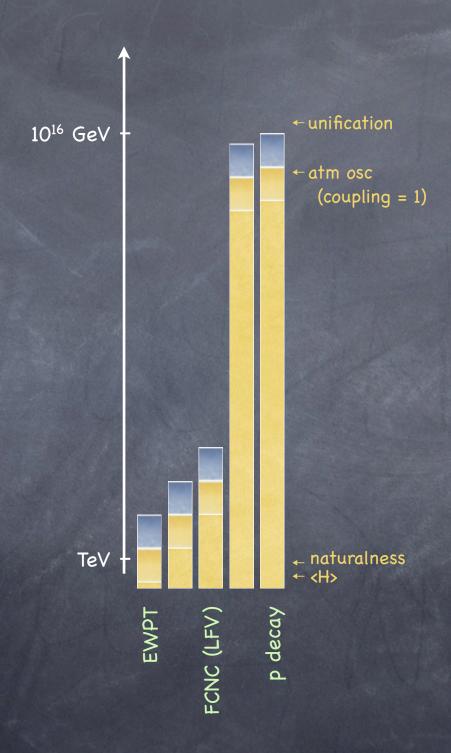
 $(SU(3)_c,SU(2)_L,Y)$

Baryon number violating operators

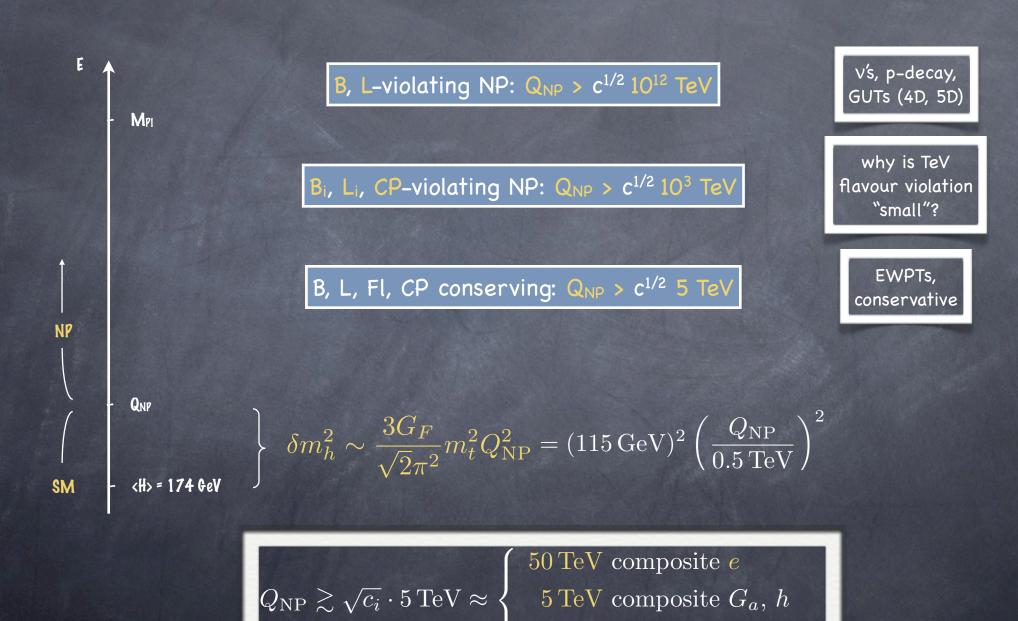
Bounds on NR terms

Quark FCNC, CP e.g.
$$\frac{c}{\Lambda^2}\bar{s}\sigma^\mu d\,\bar{s}\sigma_\mu d$$
 ($\epsilon_{\rm K},\,\Delta m_{\rm K}$) $\Lambda > c^{1/2}$ 500 TeV $\begin{array}{c} {\rm c_{SM}} \approx 10^{-8} \\ {\rm (loop + U(2)^5)} \end{array}$

$$\frac{c}{\Lambda^2}|h^\dagger D_\mu h|^2, \ \frac{c}{\Lambda^2}\bar{e}\sigma^\mu e\,\bar{e}_i\sigma_\mu e_i$$
 (EWPTs) Λ > c^{1/2} 5 TeV

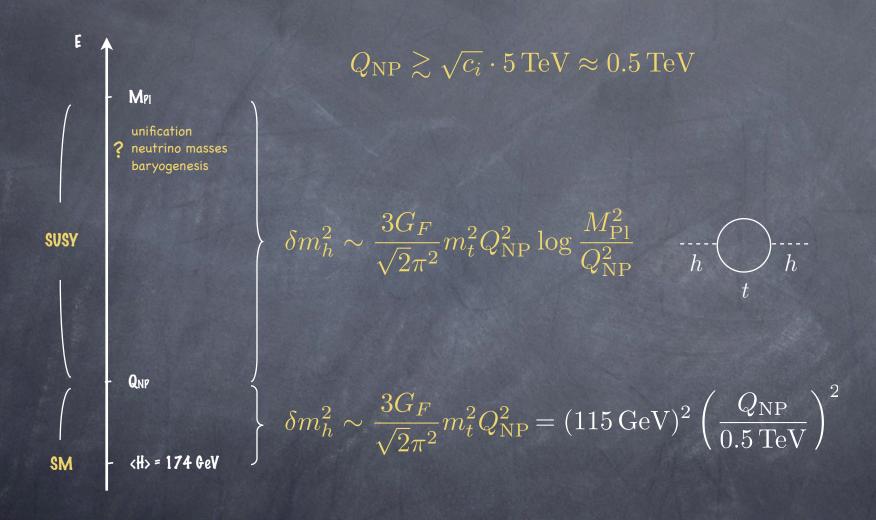


The little residual hierarchy



0.5 TeV 1-loop perturbative

MSSM



Hints of NR terms?

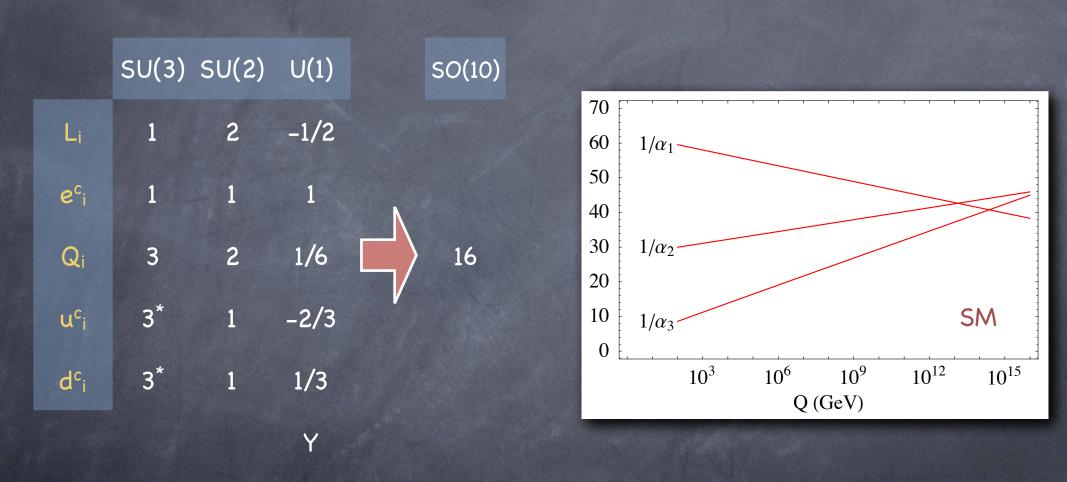
Surprisingly, the most solid hints on new physics beyond the EW scale are associated to scales Λ » TeV:

Neutrino masses

Unification

Grand unified Theories (GUTS)

Unification



+ MGUT prediction: $\Lambda_B < M_{GUT} < M_{Pl}$