Experimental verification of Higgs mechanism

Higgs, Brout, Englert, ... predicted in 1964

Higgs boson possibly discovered in 2012

Higgs mechanism a brief review

Purpose: explain existence of massive particles consistence with gauge invariance

Implications of the Higgs mechanism

• massive (massless) vectors have three (two) degrees of freedom

$$k^{\mu} = (\sqrt{m^{2} + k^{2}}, 0, 0, k)^{T} \\ \epsilon_{\mu}k^{\mu} = 0, \ \epsilon^{2} = -1 \end{cases} \begin{cases} \varepsilon_{\mu}^{(T,1)} = (0, 1, 0, 0)^{T} \\ \varepsilon_{\mu}^{(T,2)} = (0, 0, 1, 0)^{T} \\ \varepsilon_{\mu}^{(L)} = (k/m, 0, 0, E/m)^{T} \\ c_{\mu}^{(L)} = (k/m, 0, 0, E/m)^{T} \\ c_{\mu}^{(L)} = (k/m, 0, 0, E/m)^{T} \end{cases}$$

 probability conservation in scattering processes (unitarity) potentially problematic: ("cannot get out more than you put in")

Implications of the Higgs mechanism

• massive (massless) vectors have three (two) degrees of freedom

 $k^{\mu} = (\sqrt{m^{2} + k^{2}}, 0, 0, k)^{T}$ $\epsilon_{\mu} k^{\mu} = 0, \ \epsilon^{2} = -1$ $\epsilon_{\mu} k^{\mu} = 0, \ \epsilon^{2} = -1$ $\epsilon_{\mu} (T, 2) = (0, 0, 1, 0)^{T}$ $\epsilon_{\mu} (L) = (k/m, 0, 0, E/m)^{T}$ $\epsilon_{\mu} (|k| \gg m)$

 probability conservation in scattering processes (unitarity) potentially problematic: ("cannot get out more than you put in")

$$S^{\dagger}S = 1 \implies a_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} d\cos\theta \mathcal{M}(\cos\theta) P_{\ell}(\cos\theta), \quad |a_{\ell}| \leq 1$$

$$\varepsilon_{L}^{\mu} = k^{\mu}/m_{W} + \mathcal{O}(m_{W}/E)$$

$$w_{W}$$

 two additional theoretical bounds follow from the analysis of the Higgs potential beyond leading order

$$V(\Phi^{\dagger}\Phi) = \mu^2 \Phi^{\dagger}\Phi + \lambda (\Phi^{\dagger}\Phi)^2 \qquad m_h^2 = \frac{\lambda v^2}{2}$$

beyond tree level all parameters become scale dependent

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda\lambda_t^2 - 3\lambda_t^4 - \frac{3}{2}\lambda\left(3g_2^2 + g_1^2\right) + \frac{3}{16}\left(2g_2^4 + (g_2^2 + g_1^2)^2\right) \right]$$

- · in order to have a global minimum we need to have $\lambda > 0$ for $Q^2 < \Lambda^2$ for the SM to be well-defined at scales below the cut-off Λ
- the running of λ hits a Landau pole (coupling becomes infinite)

$$\frac{\mathrm{d}\lambda}{\mathrm{d}\log Q^2} = \frac{12\lambda^2}{16\pi^2} + \text{gauge \& fermion terms}$$
$$\rightarrow \quad \lambda = \lambda(v^2) \left[1 - \frac{3}{4\pi^2}\lambda(v^2)\log\frac{Q^2}{v^2} \right]^{-1}$$

- LEP2 performed precision measurements of electroweak phenomenology
- over-constrain the system of 18 free parameters by measurements and perform a global fit

Based on combination of many indirect measurements the Higgs boson should be very light: $70 \text{ GeV} \le m_h \le 140 \text{ GeV}$

AND IT SEEMS TO BE!

Major production channels at hadron colliders rule of thumb: couple the Higgs to something heavy However, proton constituents are practically massless

Production cross section at hadron colliders

Gluon Fusion

- NNLO calculation [Harlander, Kilgore (2001)]
- Large K-factor at NLO, between 1.5-2.0
- Slowly converging perturbative series
- Scale variation roughly 15% at NNLO

Weak boson fusion (WBF)

Special process:

- Most direct test of $W_L W_L \rightarrow W_L W_L$
- Because $\hat{\sigma} \sim \log \hat{s}/m_V^2$ more important at 14 TeV
- Important channel for heavy Higgs because longitudinal gauge boson component give rates $\sim m_H^3$
 - scattered quarks have large energy but small transverse momentum
 - forward tagging jets, suppressed radiation in central region (only QCD bremsstrahlung)
 - NLO corrections small

Higgs-strahlung

- Best search channel for a light Higgs boson at Tevatron
- Due to PDFs relatively small at LHC
- However, final state gauge boson good for triggering and background suppression
- Probes Higgs coupling to gauge boson

tth

- Only sizable cross section for light Higgs (mH < 130 GeV)
- Light Higgs decays dominantly to $b\overline{b}$
- Only process to measure the Higgstop coupling directly

High expectations:

Three classes of Higgs boson decays:

- 1. Higgs decay into massless gauge bosons
- 2. Higgs decay into massive gauge bosons
- 3. Higgs decay into massive fermions

Partial decay width of $a \rightarrow b_1 + b_2$

$$\Gamma(a \to b_1 + b_2) = \frac{(2\pi)^4}{2m_a} \int \frac{d^3 \vec{q_1}}{(2\pi)^3 2E_1} \frac{d^3 \vec{q_2}}{(2\pi)^3 2E_2} \delta^4(p_a - p_1 - p_2) \overline{|\mathcal{M}|^2}$$

in rest frame of a can be written as $\Gamma(a \rightarrow b_1 + b_2) = \frac{|\vec{p_1}|}{8\pi m_a^2} \overline{|\mathcal{M}|^2}$

the width only depends on the couplings and the masses

1. Higgs decay into massless gauge bosons $H \rightarrow \gamma \gamma/Z \gamma/gg$

•
$$\Gamma(H \to \gamma \gamma) \sim m_H^3$$

- Effectively only top and W contribute (W dominates)
- Destructive interference between W and top
- Below WW and ff threshold W loop always dominant; falling from $A_1^H = -7$ for small τ to $A_1^H \to -2$ for large τ
- ullet fermionic contribution grows from small ${\mathcal T}$ to threshold, then falls again

2. Higgs decay into massive gauge bosons

$$\begin{split} \Gamma(H \to VV) &= \frac{g^2 m_H^3}{128 \ \pi \ m_W^2} \delta_V \sqrt{1-x} \ (1-x+\frac{3}{4}x^2) \\ \text{with} \quad x &= \frac{4m_V^2}{m_H^2}, \ \delta_W = 2, \ \delta_Z = 1 \end{split}$$

• $\Gamma(H \to VV) \sim m_H^3$ follows from the longitudinal polarized vector component, example W:

Higgs rest frame:

$$\begin{aligned}
\overline{\left|\mathcal{M}\right|^{2}} &= g_{2}^{2} m_{W}^{2} \sum_{\text{pol.}} \epsilon_{\mu}(p_{1}) \epsilon_{\nu*}(p_{1}) \epsilon^{\mu}(p_{2}) \epsilon^{\nu*}(p_{2}) \\
&= g_{2}^{2} m_{W}^{2} \left(-g_{\mu\nu} + p_{1,\mu}p_{1,\nu}/m_{W}^{2}\right) \left(-g^{\mu\nu} + p_{2}^{\mu}p_{2}^{\nu}/m_{W}^{2}\right) \\
&= g_{2}^{2} m_{W}^{2} \left(-g_{\mu\nu} + p_{1,\mu}p_{1,\nu}/m_{W}^{2}\right) \left(-g^{\mu\nu} + p_{2}^{\mu}p_{2}^{\nu}/m_{W}^{2}\right) \\
&= g_{2}^{2} m_{W}^{2} \left[2 + \left(\frac{m_{H}^{2}}{2} + m_{W}^{2}\right)^{2}/m_{W}^{4}\right] \sim m_{H}^{4}
\end{aligned}$$

• Ratio between transverse and longitudinal polarization is

$$\frac{\Gamma(H \to V_T V_T)}{\Gamma(H \to V_L V_L)} = \frac{x^2/2}{(1 - x_V/2)^2} \to_{m_H \gg m_V} 0$$

→ direct test of Higgs mechanism

3. Higgs decay into massive fermions

The partial decay width is

 $\Gamma_f(H \to f\bar{f}) = \frac{G_F N_c}{4\sqrt{2}\pi} m_H m_f^2 \beta_f^3 \quad \text{with} \quad \beta_f = (1 - 4m_f^2/m_H^2)$ $\longrightarrow \text{ strong phase space suppression at threshold } \beta_f^3 \to 0$

Total width of the Higgs boson

Major decay channels

rule of thumb: couple the Higgs to something heavy but lighter than mH/2

How about backgrounds?

- Higgs production comparably rare at LHC
- Need huge background noise reduction
 - → stiff trigger conditions
 - → focus on rare objects (leptons)
 - precise reconstruction of objects
 - → smart choice of observables

Understanding of the Yellow and Green bands :

from Eilam Gross

 Upper limit on the Standard Model (SM) Higgs Boson production cross section divided by the Standard Model expectation as a function of m_{Higgs}

I. Discovery of the Higgs(like) boson

A. $pp \to H + X \to \gamma\gamma + X$

- Loop induced in production and decay
- Mainly sensitive to Htt and HWW couplings
- Excludes the resonance to be Spin-1 (Landau-Yang Theorem)

signal at 7 Tev: $\sigma \times BR(m_H = 125 \text{ GeV}) \simeq 0.04 \text{ pb}$ Backgrounds problematic \longrightarrow Channel for experimentalists (data driven techniques) Irreducible background

4.5 standard deviations at 126.5 GeV

Allows precise reconstruction of resonance's mass

Event selection:

- Single- or dilepton trigger
- All possible combinations with sameflavor opposite-charge lepton paris are formed
- Staggered cuts:

 $\begin{array}{ll} p_{T,e~(\mu)} > 7~(6)~{\rm GeV} & p_{T,l_1} > 20~{\rm GeV} \\ p_{T,l_2} > 15~{\rm GeV} & p_{T,l_3} > 10~{\rm GeV} \end{array}$

- Leptons have to be separated, isolated and pairwise in broad mass windows
- → 3.4 standard deviations at 125 GeV

	Signal	$ZZ^{(*)}$	Z + jets, $t\bar{t}$	Observed
4μ	2.09 ± 0.30	1.12 ± 0.05	0.13 ± 0.04	6
$2e2\mu/2\mu2e$	2.29 ± 0.33	0.80 ± 0.05	1.27 ± 0.19	5
4 <i>e</i>	0.90 ± 0.14	0.44 ± 0.04	1.09 ± 0.20	2

$$C. \quad pp \to H + X \to WW^* + X \to l^+ \bar{\nu} l'^- \nu' + X$$

- Probes HWW coupling in decay
- Direct test of EWSB, particularly in combination with HZZ
- Backgrounds difficult to simulate (MC input very important)

→ 2.8 standard deviations at 125 GeV

II. Higgs couplings measurements

After discovery the Higgs couplings have to be measured:

Present status:

- CMS did fit for couplings already
- For the overall CS one has

 $\sigma/\sigma_{\rm SM} = 0.87 \pm 0.23$

- \bullet Green band indicates $\pm 1\sigma$ uncertainty including stat. and sys. uncertainties
- Decay to photons a bit high to taus a bit low, but so far all in all good agreement with SM

• If the Higgs is SM-like it has to show up in several channels

[Lafaye, Plehn, Rauch, Zerwas, Duehrssen (2009)]

Channels are mutually related

Some couplings/channels very challenging:

- Higgs decay to light fermions
- Extracting $HZ\gamma$

assumed:
$$\Gamma_{H} = \Sigma_{SM} \Gamma_{i}$$
 $\Gamma_{i} \sim g_{d}^{2}$

- Every measurement affected by production and decay
- Need cross correlation between many channels!

coupling comparison LCs vs LHC

- ILCs better suited to measure Higgs couplings
- However, for uncertainty estimate new techniques (jet substructure) not taken into account

Techniques might be useful to improve on hbb and htt couplings

"Mirror, mirror on the wall ..."

"Mirror, mirror on the wall ..."

"Mirror, mirror on the wall ..."

Idea: [M. H. Seymour, Z. Phys. C 62, 127 (1994)]

Trailblazing analysis: [Butterworth, Davison, Rubin, Salam PRL 100 (2008)] confirmed by ATLAS [ATL-PHYS-PUB-2009-088]

HV – Higgs discovery channel

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]

<u>HV – Higgs discovery channel</u>

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]

mass drop:

HV – Higgs discovery channel

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]

- LHC 14 TeV; 30 fb⁻¹
- HERWIG/JIMMY/Fastjet cross-checked with PYTHIA with "ATLAS tune"
- 60% b-tag; 2% mistag
- Combination of HZ and HW channels

Confirmed in ATLAS full detector simulation

Higgs Selfcoupling

- For EWSB Higgs potential needed -> measure selfcoupling
- λ_{HHHH} absolutely hopeless at LHC (and any of the others...)
- λ_{HHH} very difficult to measure at the LHC

- potentially large backgrounds

For Higgs with 125 GeV decay to bottoms dominating.

Thus, QCD induced g -> bb splitting gives large backgrounds.

+- Additional hard jet can ameliorate 1/s suppression but is expensive

Many – and just a few +

Several reconstruction approaches tried in [Baur, Plehn, Rainwater PRD 69 (2004)] [Dolan, Englert, MS 1206.5001] [Papaefstathiou, Yang, Zurita 1209.1489]

Most promising final states probably $\bar{b}b\gamma\gamma$, $\bar{b}b\tau^+\tau^-$, $4\tau(?)$ But all tough! $\bar{b}bW^+W^-$

III. Higgs spin and CP

Although Landau-Yang theorem rules out spin-1 particles it will be necessary to measure spin of Higgs.

5 angles determine the kinematics of the process

$$\cos \theta_h = \frac{\mathbf{p}_{\alpha} \cdot \mathbf{p}_X}{\sqrt{\mathbf{p}_{\alpha}^2 \, \mathbf{p}_X^2}} \bigg|_{Z_h} \qquad \cos \theta_\ell = \frac{\mathbf{p}_- \cdot \mathbf{p}_X}{\sqrt{\mathbf{p}_-^2 \, \mathbf{p}_X^2}} \bigg|_{Z_\ell} \qquad \cos \theta^\star = \frac{\mathbf{p}_{Z_\ell} \cdot \hat{e}_{z'}}{\sqrt{\mathbf{p}_{Z_\ell}^2}} \bigg|_X$$

[Gao, Gritsan, Guo, Melnikov, Schulze, Tran]

For the Higgs with $m_H \gtrsim 170 \text{ GeV}$ the invariant mass of the reconstructed off-shell Z can be studied to measure the spin of the Higgs:

[[]Choi, Miller, Muehlleitner, Zerwas PLB 553 (2003)]

[Boughezal, LeCompte, Petriello 1208.4311]

$$\mathcal{A}_{M_{cut}} = \frac{N(M_{34} > M_{cut}) - N(M_{34} < M_{cut})}{N(M_{34} > M_{cut}) + N(M_{34} < M_{cut})}$$

CP of Higgs: 2 options for light Higgs

- For light Higgs with 125 GeV CP can be measured using angular correlations of tagging jets in Gluon Fusion with 2 additional jets
 [Plehn, Rainwater, Zeppenfeld PRL 88 (2002)]
- Event shape observables can be used to measure CP of Higgs [Englert, MS, Takeuchi 1203.5788]

Interaction:

Gluon-Fusion

$$\mathcal{L} = \frac{\alpha_s}{12\pi v} H G^a_{\mu\nu} G^{a\ \mu\nu} + \frac{\alpha_s}{16\pi v} A G^a_{\mu\nu} \tilde{G}^{a\ \mu\nu}$$
For tagging jets with $|p_z^J| \gg |p_{x,y}^J|$

$$\mathcal{M}_{\text{even}} \sim J_1^{\mu} J_2^{\nu} \left[g_{\mu\nu}(q_1 \cdot q_2) - q_{1\nu} q_{2\mu} \right]$$

$$\sim \left[J_1^0 J_2^0 - J_1^3 J_2^3 \right] \mathbf{p}_T^{J_1} \cdot \mathbf{p}_T^{J_2} \sim \mathbf{0} \text{ for } \Delta \phi_{jj} = \pi/2$$

 $\mathcal{M}_{
m odd}$ contains Levi-Civita tensor which is 0 if two of momenta linearly dependent, i.e. if $\Delta \phi_{jj} = 0$ or $\Delta \phi_{jj} = \pi$

Event shapes

• Event shapes well studied experimentally and theoretically

[Bethke, Nucl.Phys.Proc.Suppl. 121 (2003)] [Kluth. et al, EPJC 21 (2011)] [Banfi et al., JHEP 0408] [Gehrmann-De Ridder et al., JHEP 0712]

• Event shape measurements established in experimental collaborations already now [CMS, PLB 699 (2011)]

e.g.

Event shapes

• Event shapes well studied experimentally and theoretically

[Bethke, Nucl.Phys.Proc.Suppl. 121 (2003)] [Kluth. et al, EPJC 21 (2011)] [Banfi et al., JHEP 0408] [Gehrmann-De Ridder et al., JHEP 0712]

• Event shape measurements established in experimental collaborations already now [CMS, PLB 699 (2011)]

Tagging jets approach:

azimuthal angle between all jets with larger or smaller rapidity wrt Higgs

$$p_{<}^{\mu} = \sum_{j \in \{\text{jets: } y_{j} < y_{h}\}} p_{j}^{\mu}$$
$$p_{>}^{\mu} = \sum p_{j}^{\mu}$$

$$j \in \{ \text{jets: } y_j > y_h \}$$

$$\Delta \Phi_{jj} = \phi(p_{>}) - \phi(p_{<})$$

Tagging jets approach:

Obvious correlation between thrust and $\Delta\Phi_{jj}$

Event selection cuts

two tagging jets: $p_{T,j} \ge 40 \text{ GeV}$, and $|y_j| \le 4.5$

$$m_{jj} = \sqrt{(p_{j,1} + p_{j,2})^2} \ge 600 \text{ GeV}$$

two taus, hard and central: $p_{T,\tau} \ge 20 \text{ GeV}$, and $|y_{\tau}| \le 2.5$

 $|m_{\tau\tau} - m_H| < 20 \text{ GeV}$

For event shapes use either constituents with

 $p_{T,i} \ge 1 \text{ GeV} \quad |\eta_i| \le 4.5$

or, to reduce pileup sensitivity $p_{T,j} \ge 40 \text{ GeV}$, if $2.5 \le |y_j| \le 4.5$, and $p_{T,j} \ge 10 \text{ GeV}$, if $|y_j| \le 2.5$.

Distributions CP-odd vs CP-even

