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1.1 Introduction

The path integral formulation provides an elegant way to quantize a field theory. Introducing
a source field J , the generating functional for a theory in D dimensions is defined as:

Z[J ] =

�
Dφ exp

�
iS[φ] + i

�
dDxJ(x)φ(x)

�
. (1.1)

By analogy with statistical mechanics, we will sometimes refer to Z as the partition function
for the system. The analogy with statistical mechanics will become more obvious after
rotating to Euclidean space, as discussed below. The field correlators, which are called
Wightman functions in Minkowski space, are the functional derivatives of Z[J ] with respect
to the source:

W (x1, . . . , xn) = �φ(x1) . . .φ(xn)� = (−i)n
δ

δJ(x1) . . . δJ(xn)
Z[J ] . (1.2)

All physical quantities are obtained from the field correlators in Eq. (1.39), which are the
fundamental building blocks of a quantum field theory (QFT). Starting from the Wight-
mann functions, the Hilbert space of physical states, and the S-matrix of the theory can be
reconstructed.

Källen-Lehmann representation As an illustration, let us discuss how the particle con-
tent of the theory is encoded in the two-point functions. The KL representation makes the
link between the spectrum of the theory and the correlators explicit.

The physical states are eigenstates of the Hamiltonian. If the theory is invariant under
spatial translations, we have: �

Ĥ, P̂k

�
= 0. (1.3)

Hence Ĥ and P̂k can be diagonalized simultaneously, i.e. the states of the theory are char-
acterized as eigenstates of the Hamiltonian and the momentum operators:

P̂k|α,p� = pk|α,p� , (1.4)

Ĥ|α,p� = Eα(p)|α,p� , (1.5)

where α is a label for the states in the theory. Note that α ranges over multi-particle states
as well. The energy of the state is:

Eα(p)
2 = p2 +m2

α . (1.6)

The total momentum is p, while mα is the energy of the state in the center-of-mass frame.
We adopt a relativistic normalization of the states:

�α,p|α�,p�� = δαα�2Eα(p)(2π)
D−1δ(p− p�) , (1.7)
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which leads to the completeness relation:

1 = |0��0|+
�

α

�
dD−1p

(2π)D−12Eα(p)
|α,p��α,p| . (1.8)

Let x0 > 0, the time-ordered two-point correlator can be written as:

�Tφ(x)φ(0)� = �φ(x)φ(0)� (1.9)

= �0|eiP̂ ·xφ(0)e−iP̂ ·xφ(0)|0� (1.10)

=
�

α

�
dD−1p

(2π)D−12Eα(p)
e−ip·x |�0|φ(0)|α,p�|2

���
p0=Eα(p)

(1.11)

= i
�

α

�
dDp

(2π)D
e−ip·x |�0|φ(0)|α,p�|2

p2 −m2
α + i�

. (1.12)

The state |α,p� can be written as:

|α,p� = Λ(p)|α, 0� , (1.13)

where we have denoted by Λ(p) the Lorentz transformation that boosts the system from
being at rest to having momentum p. Using Eq. (1.13), we find:

�0|φ(0)|α,p� = �0|Λ(p)−1φ(0)Λ(p)|α, 0� (1.14)

= �0|φ(0)|α, 0� , (1.15)

where we used the fact that the field φ(x) is a scalar under Lorentz transformations.
Inserting Eq. (1.15) in Eq. (1.12) yields the Källen-Lehman representation for the two-

point function:

�Tφ(x)φ(0)� =
�

∞

0

dµ2

2π
ρ(µ2)∆(x;µ2) . (1.16)

∆(x;µ2) is the free propagator for a particle of mass µ2:

∆(x;µ2) = i

�
dDp

(2π)D
e−ip·x

p2 − µ2 + i�
, (1.17)

and ρ(µ2) is the spectral density:

ρ(µ2) =
�

α

Zα(2π)δ(µ
2 −m2

α) + cont . (1.18)

Note that each single-particle states contributes a δ function to the spectral density. They
correspond to single poles in momentum space, and yield an exponential decay of the two-
point functions in Euclidean space:

�φ(x4, �x)φ(0)� =
�

α

�
dD−1p

(2π)D−12Eα(p)
e−Eα(p)x4 e−ip·�x |�0|φ(0)|α, 0�|2 . (1.19)
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Lattice regularization In order to be able to compute the field correlators we need to
solve two problems that are hidden in Eq. (1.1).

1. Z[J ] is usually defined in perturbation theory, by expanding the partition function in
powers of the coupling constants. As this expansion is often at best asymptotic, a
nonperturbative definition is required for strongly-interacting theories.

2. The path integral is plagued by ultraviolet (UV) divergences, which need to be regu-
lated, and renormalized. This problem was realized immediately in the early days of
QFT, and the renormalization procedure was fully developed in the works of Tomonaga,
Schwinger, Feynman, and Dyson.

The formulation of field theories on a space-time Euclidean lattice solves both problems.
The space-time points are the vertices of a regular lattice, with lattice size a, so that the
coordinates of the lattice points are xµ = nµa, where nµ is an integer. The path integral in
the partition function becomes a multi-dimensional integral. If the system is put in a finite
box, we are left with a finite-dimensional integral, which is mathematically well-defined. The
inverse of the lattice spacing a−1 acts as an UV cutoff. The continuation of the time variable
to imaginary values was first introduced by Dyson, Wick, Schwinger, and Symanzik; the
integrand in the path integral is real and bounded, thereby simplifying both the theoretical
and numerical studies. Moreover the Euclidean formulation makes the equivalence between
QFT and statistical mechanics particularly evident, and has allowed notable progress in both
fields over the years. Most of the physical information can be extracted directly from the
Euclidean theory. When necessary, correlators can be analytically continued to Minkowski
space.

1.2 Euclidean lattice theory

Let us start by defining the scalar theory on a Euclidean lattice. In this Section we introduce
the notation used in the rest of the lectures. We will follow quite closely the presentation in
the book by Jan Smit. 1

The dynamical variables in a lattice scalar theory are the fields at each spatial point
φ(x, t). In QFT they are promoted to operators φ̂(x) acting in the Hilbert space of physical
states. We can define the coordinate representation by introducing a basis of eigenstates of

1J. Smit, “Introduction to Quantum Fields on a Lattice”, Cambridge lecture notes in Physics, 2002
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the fields:

φ̂(x)|φ� = φ(x)|φ� , (1.20)

|φ� =
�

x

|φ(x)� , (1.21)

�φ�|φ� =
�

x

δ
�
φ�(x)− φ(x)

�
. (1.22)

Note that in the equations above we have suppressed the dependence of the fields on time.
The latter can be reinstated when needed with little effort. As time evolves the state vectors
are denoted |φ(t)�.

The lattice coordinates are:

xµ = nµa; nµ = 0, . . . , N − 1 , (1.23)

where a is the lattice spacing, and the size of the box is L = Na. The index µ ranges from 1
to D, and we shall usually identify xD with the Euclidean time direction. In D dimensions,
the total volume is Ω = LD. We will also refer to the spatial volume V = LD−1. When
needed we shall identify a “temporal” direction and call T its extension in physical units. 2

A sum over the whole volume is written as:

�

x

= aD
�

n

. (1.24)

If we take the limit a → 0, at fixed L, for a smooth function f(x):

�

x

f(x) →
�

L

0
dDx f(x) . (1.25)

Derivatives can be discretized as:

∇µφ(x) =
1

a
[φ(x+ aµ̂)− φ(x)] , (1.26)

∇∗
µφ(x) =

1

a
[φ(x)− φ(x− aµ̂)] . (1.27)

The lattice formulation yields an unambiguous definition the path integral:

Z =

�
Dφ e−SE [φ] , (1.28)

2Note however that in Euclidean space the identification of a temporal direction is arbitrary.
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where:
�

Dφ =
�

x

�
dφ(x) , (1.29)

SE [φ] =
�

x

�
1

2
∇µφ(x)∇µφ(x) +

1

2
m2

0φ(x)
2 +

1

4!
g0φ(x)

4

�
. (1.30)

The bare couplings m2
0 and g0 define the theory at the scale of the UV cutoff. In eq. (1.30) the

couplings are dimensioful quantity. When discussing the RG flows, we will use dimensionless
couplings, i.e. we will rescale the dimensionful ones by the appropriate power of the lattice
spacing. Note that the scalar field has mass dimension

[φ] =
D − 2

2
, (1.31)

and hence the action in Eq. (1.30) is dimensionless. The choice of the discretized action SE

is such that it yields the classical action in continuum space-time as a → 0.
We can readily determine the symmetries of the lattice action SE . Similarly to the case of

the continuum theory, this action is symmetric under the transformation φ → −φ. However,
the Lorentz invariance of the continuum theory is replaced by the D-dimensional hypercubic
group. We shall comment again on the consequences of this property.

1.3 Transfer matrix

Let us consider a symmetric lattice, we identify one direction with the time direction, and
interpret the path integral as the quantum amplitude for a field configuration to evolve from
time 0 to time T = Na. For a lattice with periodic boundary conditions in time, we want to
identify this quantum amplitude with the trace of the transfer matrix:

Z =

�
�

x

�
dφ(x)

�
�φ(N)|T̂ |φ(N − 1)� . . . �φ(1)|T̂ |φ(0)�

= Tr T̂N .

We start by rewriting the Euclidean action in Eq. (1.30) as:

SE [φ] = a
�

n4

aD−1
�

n

1

2a2
[φ(n, n4 + 1)− φ(n, n4)]

2 + a
�

n4

V [φ(n4)] , (1.32)

where

V [φ(n4)] = aD−1
�

n

�
3�

k=1

1

2
(∇kφ(n, n4))

2 +
1

2
m2

0φ(n, n4)
2 +

1

4!
g0φ(n, n4)

4

�
. (1.33)
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Note that each term in the sum over n4 in Eq. (1.32) only depends on the field configuration
at time n4 and n4+1. Hence the matrix elements of the operator T̂ between field eigenstates
is:

�φ(n4 + 1)|T̂ |φ(n4)� = exp

�
−a aD−1

�

n

1

2a2
[φ(�n, n4 + 1)− φ(�n, n4)]

2

�
×

exp
�
−a

2
(V [φ(n4 + 1)]− V [φ(n4)])

�
,

where |φ(n4)� is the field eigenstate at time t = n4a. It is straightforward to check that the
operator T̂ can be written as:

T̂ = exp
�
−a

2
V (φ̂)

�
exp

�
−a

2
aD−1

�

n

Π̂(�n)

�
exp

�
−a

2
V (φ̂)

�
, (1.34)

where Π̂(�n) is the conjugate momentum operator such that
�
φ̂(�n), Π̂(�n�)

�
= i

1

aD−1
δn,n� ≡ iδ̄xx� . (1.35)

The discrete delta function δ̄xx� is normalized in order to have the same dimensions as the
Dirac delta in the continuum theory. With the normalizations adopted here:

�

x

δ̄x,0 = 1 , (1.36)

so that the lattice equations should be very similar to the continuum ones. The Hamiltonian
is defined from the transfer matrix:

T̂ = e−aĤ = 1− aĤ +O(a2) , (1.37)

Ĥ = aD−1
�

n



1

2
Π̂(n)2 +

1

2

�

j

∂jφ̂(n)∂jφ̂(n) +
1

2
m2

0φ̂(n)
2 +

1

4!
g0φ̂(n)

4



 . (1.38)

It is straighforward to show that the operator T̂ defined above is indeed positive, and therefore
the Hamiltonian is a well-defined hermitean operator.

1.4 Expectation values of operators

The same manipulations can be performed for a generic field correlator; they lead to an
expression for the correlator as a trace of field operators and powers of the transfer matrix.
For instance for a tow-point function we have:

�φ(x, t)φ(y, 0)� = Z−1
�

Dφ e−SE [φ] φ(x, t)φ(y, 0) =
Tr

�
T̂ T−t φ̂(x) T̂ t φ̂(y)

�

Tr T̂N
. (1.39)
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1.5 Free scalar field

A number of interesting results can be derived by analysing the free theory (g0 = 0). In
particular, we will obtain some simple examples of properties that characterize a lattice field
theory. We shall assume in this section that m2

0 > 0. The action in this case is a quadratic
form:

SE [φ] =
�

x

�
1

2
∇µφ(x)∇µφ(x) +

1

2
m2

0φ(x)
2

�
(1.40)

=
1

2

�

x,y

φ(x)K0(x, y)φ(y) . (1.41)

The kernel for the free action is

K0(x, y) = a−2
�

z

�
�

µ

(δ̄z+aµ̂,x − δ̄z,x)(δ̄z+aµ̂,y − δ̄z,y) + (m2
0a

2)δ̄z,xδ̄z,y

�
. (1.42)

Here and in the following equations, ths suffix “0” indicates that the field correlators are
computed in the free field theory. The generating functional

Z[J ] =

�
Dφ exp

�
−SE [φ] +

�

x

J(x)φ(x)

�

=

�
Dφ exp

�
−
�

xy

φ(x)K0(x, y)φ(y) +
�

x

J(x)φ(x)

�
(1.43)

is computed by the usual shift of variables, thereby reducing the integral to a Gaussian one.
The result is

Z[J ] =
�
det a2+D K0

�−1/2
exp

�
−1

2

�

x,y

J(x)∆0(x, y)J(y)

�
, (1.44)

where ∆0 is the free lattice propagator, i.e. the inverse of the kernel K0:
�

z

K0(x, z)∆0(z, y) = δ̄x,y . (1.45)

The propagator is easily computed in momentum space, where the kernel for the kinetic term
K0 becomes diagonal:

K0(p, q) =
�

x,y

e−ip·x−iq·yK0(x, y) (1.46)

= K0(p)δ̄p,−q . (1.47)



1.5. FREE SCALAR FIELD 9

A simple computation yields:

K0(p) =
�

µ

4

a2
sin2

�pµa
2

�
+m2

0 ≡ ∆0(p)
−1 , (1.48)

where ∆0(p) is the propagator in momentum space. Taking the limit a → 0, we recover the
continuum expression:

lim
a→0

∆(p) =
1

p2 +m2
0

+O(a2) . (1.49)

Note that by taking the continuum limit we have restored the O(4) symmetry, i.e. the
Euclidean version of the continuum Lorentz symmetry.

Particle content We can now discuss the physical spectrum of the free lattice theory by
computing the two-point function in position space and comparing with the KL representation
that we have introduced at the beginning of this chapter.

The two-point correlator in a lattice with infinite temporal extent is given by:

∆0(x) = �φ(x)φ(0)� =
�

π/a

−π/a

dp4
2π

�

p

eip·x∆0(p) . (1.50)

Thus
∆0(x) =

�

p

eip·x I(p,m0a) , (1.51)

where:

I(p,m0a) = a2
�

π/a

−π/a

dp4
2π

eip4t

2b− 2 cos p4a
. (1.52)

The dimensionless function b is defined as:

b(p,m0a) = 1 +
1

2



m2
0a

2 +
�

j

4 sin2
pja

2



 > 1 for m2
0 > 0 . (1.53)

Introducing the dimensionless variables n4 = t/a, and p̂4 = p4a, the function I becomes:

I = a

�
π

−π

dp̂4
2π

eip̂4n4

2b− 2 cos p̂4
. (1.54)

The integral is computed by a change of variable, z = eip̂4 :

I = −a

�
dz

2πi

zn4

z2 − 2bz + 1
, (1.55)
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where the integral in the complex z-plane extends along the unit circle. The latter integral is
easily computed by examining the residue of the integrand at the poles. The integrand has
got poles at:

z± = b±
�
b2 − 1 . (1.56)

Only the pole at z− is inside the unit circle, and therefore contributes to the integral. Let us
introduce ω > 0 by writing z− = e−ω. Then:

e−ω = b−
�
b2 − 1 (1.57)

eω = b+
�
b2 − 1 , (1.58)

and hence:

b = coshω (1.59)

ω = log
�
b+

�
b2 − 1

�
. (1.60)

Computing the residue allows us to rewrite Eq. (1.51) as:

∆(x, t) =
�

p

eip·x−ωt
1

2 sinhω
. (1.61)

Note that the pole at z = z− corresponds to a pole at p4 = iω. Comparing with the
KL representation discussed in the paragraph above, we see that the spectrum of the free
lattice theory contains a single particle state with energy ω(p). In the continuum limit
am0 � 1, api � 1, we recover Lorentz invariance and the usual dispersion relation:

ω → (
�
p2 +m2

0)a . (1.62)

1.6 Wick rotation

The free field theory is a simple laboratory, which is useful to explore properties of field
theories. The Wick rotation from Euclidean to Minkowski space-time, and the resulting
analytical continuation of the field correlators, is nicely illustrated by the behaviour of a free
field in the continuum limit a → 0. In this case, the two-point correlator in Euclidean space
can be written:

∆(x) =

�
dDp

(2π)D
eip·x

1

p2 +m2
0

. (1.63)

Separating the integral in the Euclidean pD direction from the integral in the other D − 1
spatial directions yields:

∆(x) =

�
dD−1p

(2π)D−1
eip·x

� +∞

−∞

dpD
(2π)

eipDxD

p2 +m2
0

, (1.64)



1.6. WICK ROTATION 11

where the integral over pD goes from −∞ to +∞ along the real axis. Let us now focus
precisely on the integration over pD. We can extend the integral to complex pD, and consider
the closed contour in Fig. 1.1. The vertical part of the integration contour is shifted by some
angle � in order to avoid the poles of the integrand on the imaginary axis. Since the contour
does not contain these poles, the total integral has to vanish.

s

Figure 1.1: Integration contour defining the Wick rotation. Note that the poles of the
integrand at ±ω are not included inside the contour. The paths S1 and S2 are indicated.

The integral along the two arcs at infinity vanishes, and therefore we find:

��

S1

+

�

S2

�
dpD
(2π)

eipDxD

p2 +m2
0

= 0 . (1.65)

Note that we have denoted by S1 the integration path along the horizontal axis, and by S2

the integration path along the “almost” vertical axis. The complex variable pD along the S2

path can be parametrized as:
pD = iei�p0 , (1.66)

where p0 is a real variable ranging from −∞ to +∞.
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A straightforward computation yields:

−
�

S2

dpD
(2π)

eipDxD

p2 +m2
0

= −i

� +∞

−∞

dp0
2π

e−i(ip0)x0

−p20 + p2 +m2
0 − i�

(1.67)

= i

� +∞

−∞

dp0
2π

e−ip0x0

p2 −m2
0 + i�

, (1.68)

where we have defined x0 = ixD, and all the scalar products in the last line are to be
computed with a Minkowskian metric. The expression in the last line is precisely the time-
ordered product

�Tφ(x)φ(0)� =
� +∞

−∞

dp0
2π

e−ip0x0

p2 −m2
0 + i�

(1.69)

for a free field theory in Minkowski space. Hence, we obtain the final result:

∆(x) = i∆M (xM ) , (1.70)

where quantities in Minkowski space are denoted by a subscript M . Eq. (1.70) shows explic-
itly how the two-point time-ordered correlator in Minkowski space is obtained by analytical
continuation of the Euclidean one. This analytical continuation is usually called a Wick
rotation:

xµ
M

= (x0,x), xµ = (x, xD), xD = ix0 , (1.71)

pµ
M

= (p0,p), pµ = (p, pD), pD = ip0 . (1.72)

1.7 Euclidean vs Minkowski space

The result in the previous section is a simple example of the relations between field correlators
in Euclidean and Minkowski space. Let us now discuss the general case.

A QFT in Minkowski space is characterized by: 3

1. a Hilbert space of states, H, which contains the vacuum state |0�;

2. a unitary representation of the Poincaré group U(Λ, a) acting on H;

3. the spectrum of the momentum four-vector Pµ being contained in the forward light-
cone:

V + =
�
qµ : q0 ≥ 0, q2 ≥ 0

�
. (1.73)

3For more details and references you can consult the book by Montvay and Münster, “Quantum Fields on
a Lattice”, Cambridge Monographs on Mathematical Physics, 1994. A succint presentation is also available
in P. Hernandez, lectures in “Modern Perspective in Lattice QCD”, Oxford University Press, 2011.



1.8. REFLECTION POSITIVITY 13

4. the vacuum state |0� being the only vector invariant under the Poincaré group.

5. the field φ being an operator-valued distribution, acting on H.

6. the field transforming under Poincaré as:

φ(Λx+ a) = U(Λ, a)φ(x)U(Λ, a)−1 . (1.74)

7. locality:
[φ(x),φ(y)] = 0 , for (x− y)2 ≤ 0 . (1.75)

The n-point correlation functions W (x1, . . . , xn) defined in Eq. (1.39) contain all the physical
information about the QFT, and allow the Hilbert space to be reconstructed. The correlators
in Minkowski space are called Wightman functions.

Under the conditions listed above, the Wightman functions can be analytically continued
to complex values of the time coordinates x0

k
. The Euclidean correlators, also called Schwinger

functions, are defined as:

S(x1, . . . , xn) = W (. . . ;−ix4
k
,xk; . . .) . (1.76)

They are analytic functions for all points, as long as:

xi �= xj , for i �= j . (1.77)

The Schwinger functions are computed on the lattice for real values of the Euclidean time
xD
k
. The Wightman functions are obtained as boundary values of the Schwinger functions:

W (x1, . . . , xn) = lim
�k→0

�k−�k+1>0

S(. . . ;xk, ix
0
k
+ �k; . . .), xk ∈ R4 . (1.78)

The time-ordered correlators in Minkowski space are instead obtained from the Wick rotation
as discussed in the previous section.

To guarantee that Schwinger functions can be continued to Minkowski space, they have
to satisfy the Osterwalder-Schrader positivity (or reflection positivity) condition. Reflection
positivity replaces the Hilbert space positivity and the spectral condition introduced above
for a theory in Minkowski space. Checking reflection positivity for a theory defined on the
lattice is crucial to ensure that a positive-definite Hamiltonian can be constructed.

1.8 Reflection positivity

Consider a product of fields at positive Euclidean times:

O(x1, . . . , xn), xD
k
> 0, for all k . (1.79)
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Let us define the reflection operator

θ : xµ = (x, xD) �→ x̃µ = (x,−xD) ; (1.80)

its action on the correlator is given by:

θ [O(x1, . . . , xn)] = O(x̃1, . . . , x̃n) . (1.81)

The theory obeys reflection positivity if:

�θ[O†]O� ≤ 0, for all O. (1.82)

1.9 Continuum limit

Let us now discuss the relation between the theory defined on a space-time lattice, and the
continuum theory. The lattice formulation of a field theory regulates the UV divergencies by
introducing a sharp cut-off in momentum space Λ = a−1; all momenta are limited within the
first Brillouin zone, i.e. |apµ| < π. For given bare parameters, the Schwinger functions are
well-defined and can be computed. As the bare parameters are changed, we explore the phase
diagram of the lattice theory. The continuum limit of the lattice theory is obtained by tuning
the bare parameters in such a way that the lattice theory describes the continuum physics
at energy scales µ well below the cutoff scale, µa � 1. The Euclidean formulation clearly
emphasizes the analogy between QFT and statistical mechanics; the renormalization group
formalism introduced by Wilson illustrates the close relationship between the renormalization
of QFT and critical phenomena in statistical mechanics.

If a limit exists where a → 0 and physical scales mphys stay finite, then clearly

lim
a→0

amphys → 0 . (1.83)

In statistical mechanics the mass is related to the inverse correlation length mphys = ξ−1,
and therefore in the continuum limit we expect:

lim
a→0

ξ/a → ∞ , (1.84)

i.e. the correlation length in units of the lattice spacing has to vanish. The points in the phase
diagram of a statistical system where the correlation length diverges are called critical points.
The continuum limit of a QFT corresponds to the critical points of the lattice model. It is a
well-known fact that the long-distance physics of a system near criticality is dictated by the
symmetries and dimensionality of the system rather than by the details of the Hamiltonian.
This phenomenon is known under the name of universality. In QFT universality ensures
that the low-energy predictions become independent of the details of the discretization at
the lattice scale.
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Universality is best understood in terms of the renormalization group flow introduced
by Wilson. Let us start from a generic action, defined at the scale of the lattice cutoff by
including all the local couplings that are consistent with the symmetries of the lattice theory:

SE [φ] =
�

α

gα(a)Oα[φ] , (1.85)

where gα denote bare dimensionless couplings in the lattice action, and Oα[φ] are functional
polynomials in the field and its derivatives.

When interested in the long-distance dynamics, the UV modes between the cutoff scale
a and some larger distance scale a� = sa, (s > 1) can be integrated out, while requiring that
the low-energy physics remains constant. This results in a redefinition of the couplings and
a rescaling of the fields, i.e. in a new action:

S�
E [φ

�] =
�

α

gα(a
�)Oα[φ

�] , (1.86)

where φ� = Z(s)φ is the rescaled field. Note that the action S�
E

has the same form as
the old one because we started from an action that included all possible interactions terms.
Integrating out the degress of freedoms yields a redefinition of the parameters only. Had we
started from a subset of interactions, new terms would have been generated while integrating
out the UV modes. Correlators of the field φ� computed in the theory with a cutoff a� and
bare couplings g�α = gα(a�) yield the same low-energy physics as the correlators of the original
theory. The same procedure can be repeated for an arbitrary number of steps, with the cutoff
scale being decreased by a factor s in each step. We obtain in this way a series of couplings

g(n)α ≡ gα(sna). The transformation:

g(n)α �→ g(n+1)
α = Rα(g

(n)) , (1.87)

is called a renormalization group transformation. The limit where s = et, and t → 0, defines
an infinitesimal transformation, which generates a flow in the space of couplings. The rate
of change of each coupling is encoded in the so-called beta functions:

− d

dt
gα = βα(g) . (1.88)

Note that there is one beta function for each coupling, and the beta functions depend in
principle on all couplings gα. This defines a flow in an infinite-dimensional space of couplings,
since we started from an action that contained all possible couplings that are compatible with
symmetry. Fortunately things become simpler in the vicinity of critical points.

Since the physics is left unchanged, while the lattice spacing is increased by a factor s
at each iteration, the correlation length in lattice units decreases along an RG trajectory.
Critical points must correspond to fixed points of the trajectories:

g∗α = Rα(g
∗) . (1.89)
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Note that at a fixed point, the action is invariant as the cutoff is varied, i.e. the action
describes a scale-invariant theory.

The behaviour of the RG flow in the neighbourhood of a fixed point can be obtained by
linearizing the flow equations. Let us define the deviation from the fixed point:

δgα = gα − g∗α , (1.90)

then:

δg�α = R∗

αβ
δgα ; (1.91)

R∗

αβ
=

∂Rα

∂gβ

����
g=g∗

. (1.92)

Note that the matrix R∗ depends on the fixed point. It is clear from the linearized flow
equation that the behaviour of the couplings near criticality is dictated by the eigenvalues of
R∗. For eigenvalues λi < 1 the flow is attractive, while for eigenvalues λi > 1 the flow will
diverge away from the fixed point. If we consider the differential flow, we find:

d

dt
(δgα) = L∗

αβ
(δgβ) . (1.93)

The eigenvalues of the linearized flow eiα satisfy:

(L∗)t
αβ

ei
β
= λie

i

α . (1.94)

The evolution equations for the couplings

ui = eiα (δgα) (1.95)

are decoupled ODEs:

d

dt
ui = yiui , (1.96)

and yield a power-law behaviour for the evolution of the couplings:

ui(s) = ui(1)s
yi . (1.97)

Note that this is the same behaviour one would obtain in Eq. (1.91), after the identification:

λi = syi . (1.98)

Couplings that correspond to yi > 0 are therefore relevant, and viceversa. The irrelevant
couplings converge to their fixed point value u∗

i
as s increases, i.e. the low-energy dynamics
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becomes independent from the value of the irrelevant couplings as we increase the separation
s = 1/(µa) between the UV cutoff (a−1) and the scale that we want to probe in the theory
(µ). The set of points that flow into the fixed point defines a hypersurface in the space of
couplings called the critical surface. On the critical surface the correlation length is infinite.

For the lattice theory to describe the desired physics at low-energies, we need to tune the
relevant operators only at the scale of the cutoff. Hence the reason for universality, and for
being able to reproduce the continuum theory without having to do an infinite amount of
fine-tuning of the bare couplings.

1.10 Weak coupling

Let us now discuss the continuum limit of the scalar theory in the weak coupling regime, i.e.
when the partition function can be evaluated reliably in perturbation theory. All computa-
tions are performed in the symmetric phase, where the vacuum expectation vacuum of the
field vanishes. The Feynman rules can be derived by standard techniques from the Euclidean
action:

1. each line is associated to a lattice propagator;

2. each four-point vertex yields a factor of −g0;

3. momentum is conserved modulo 2π at each vertex;

4. loop momenta are integrated in the first Brillouin zone.

It is customary to rewrite the lattice action in terms of two new couplings κ and λ:

SE [φ] =
�

x

�
−2κ

�

µ

φ(x)φ(x+ aµ̂) + φ(x)2 + λ
�
φ(x)2 − 1

�
�

. (1.99)

Note that this action is obtained from the original one by the following redefinition of the
fields and couplings in four dimensions:

aφ(x) �→
√
2κφ(x) , (1.100)

a2m2
0 �→

1− 2λ

κ
− 8 , (1.101)

g0 �→
6λ

κ2
. (1.102)

All the new couplings and fields are dimensionless. This form of the action emphasizes the
relation with statistical mechanics. The kinetic term gives rise to a next-neighbour coupling,
whose strength is given by the hopping parameter κ. The quartic coupling g0 is proportional
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to λ; in the λ → ∞ limit, we get the constraint φ(x)2 − 1 = 0, and the system reduces to
the four-dimensional Ising model. On the other hand, in the limit λ → 0 we recover the free
field theory discussed above. Perturbative calculations are performed in a neighbourhood
of this limit, by expanding the solution in a power series in λ. There is another interesting
limit where the system can be solved analytically; this is the limit where κ → 0 and the
fields at different sites are decoupled. The partition function is simply the product of single-
site partition functions. Expanding the partition function in a power series in κ is called
a hopping parameter expansion (or high-temperature expansion by analogy with statistical
mechanics).

Propagator As discussed before, the particle content of the theory can be obtained from
the poles in two-point function. Let us introduce:

C(t,p) =
�

x

e−ip·x∆(t,x) (1.103)

=

�
dp4
2π

eip4t∆(p, p4) . (1.104)

The full propagator in momentum space has poles at p4 = ±iE(p), and therefore the physical
mass can be defined as:

m = E(0) . (1.105)

With the new normalization for the field introduced in Eq. (1.100) we denote the residue at
the pole by:

Z3

4mκ
, (1.106)

so that the zero-momentum propagator for the original field φ is:

[2κ∆(0, p4)]
−1 =

1

Z3
(p24 +m2) +O

�
(p4 +m2)2

�
. (1.107)

For small momenta we can expand

E(p) = m+
p2

2m∗

+O(p4) . (1.108)

The coefficient of the quadratic term defines the kinetic mass m∗.
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Vertex functions The vertex functions (1PI correlators) are the functional derivatives
of the quantum action Γ[ϕ], the latter being the Legendre transform of the generator of
connected diagrams W [J ]:

Γ(n) =
∂Γ

∂ϕ1 . . . ∂ϕn

����
ϕ=0

, (1.109)

where

Γ[ϕ] +W [J ] =
�

x

ϕ(x)J(x), ϕ(x) =
∂W

∂J(x)
. (1.110)

The explicit expressions for the vertex functions for n = 2, 3, 4 in momentum space are given
respectively by:

Γ(2)(p) = ∆(p)−1 , (1.111)

Γ(3)(p1, p2, p3) = S(p1, p2, p3)∆(p1)
−1∆(p2)

−1∆(p3)
−1 , (1.112)

Γ(4)(p1, p2, p3, p4) = {S(p1, p2, p3, p4)
− S(p1, p2,−p1 − p2)S(p3, p4,−p3 − p4)∆(p1 + p2)

−1

− S(p1, p3,−p1 − p3)S(p2, p4,−p2 − p4)S(p1 + p3)
−1

− S(p1, p4,−p1 − p4)S(p2, p3,−p2 − p3)∆(p1 + p4)
−1

�

×∆(p1)
−1∆(p2)

−1∆(p3)
−1∆(p4)

−1 (1.113)

The renormalized couplings can be defined from the vertex functions:

Γ(n)
R

(p1, . . . , pn) =

�
ZR

2κ

�n/2

Γ(n)(p1, . . . , pn) , (1.114)

Γ(2)
R

(p) = m2
R + p2 +O(p4) (1.115)

Γ(4)
R

(0, 0, 0, 0) = gR . (1.116)

The renormalized couplings are obtained from the so-called susceptibilities and moments:

χn =
�

x1,...,xn

S(x1, . . . , xn) , (1.117)

µ2 =
�

x

x2∆(x) , (1.118)
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by the following relations:

m2
R =

8χ2

µ2
, (1.119)

ZR = 2κ
8χ2

2

µ2
, (1.120)

gR =
64

µ2
2

�
χ4 − 3

χ2
3

χ2

�
. (1.121)

Perturbation theory We have now all the tools in place to discuss the continuum limit
in perturbation theory. The contributions to Γ(2) up to O(g20) are shown in Fig. 1.2. They
yield:

1

2κ
∆(p)−1 = (a2p̂2 + a2m2

0) +
g0
2
J1(am0)−

g40
4
J1(am0)J2(am0)−

g20
6
I3(am0) + . . . ,

(1.122)

where

Jn(am0) =

�

q

∆(aq)n , (1.123)

I3(am0, ap) =

�

q1,q2

∆(aq1)∆(aq2)∆(ap− aq1 − aq2) . (1.124)

Figure 1.2: Contribution to the two-point vertex function up to two loops.

We have denoted by ∆(aq) the lattice propagator for the scalar field with bare mass m0:

∆(q) =
1

4
�

µ
sin2(aqµ/2) + a2m2

0

. (1.125)



1.10. WEAK COUPLING 21

At one-loop there is no momentum-dependent term in the expression for S(p), and hence:

ZR = 1 +O(g20) , (1.126)

a2m2
R = a2m2

0 +
g0
2
J1(am0) +O(g20) . (1.127)

The four-point vertex is computed by evaluating the diagrams in Fig. 1.3. The final result
is:

�
1

2κ

�2

Γ(4)(p1, p2, p3, p4) = g0−

− g20
2
[I2(am0, ap1 + ap2) + I2(am0, ap1 + ap3) + I2(am0, ap1 + ap4)] + . . . ,

(1.128)

where we introduced

I2(am0, ap) =

�

q

∆(aq)∆(ap− aq) . (1.129)

X - iL)o<+ \e,rr^,rlilt - 
]

Figure 1.3: Contribution to the four-point vertex function up to one loop.

Eq. (1.128) yields:

gR = g0 −
3

2
g20J2(am0) +O(g30) . (1.130)

Note that these relations involve dimensionless couplings like g0 and am0. It is clear from
these results that the renormalized couplings are related to the bare parameters via the loop
integrals Jn and In. As already mentioned, when the theory is defined on the lattice all UV
divergencies are regulated, and these integrals are convergent.
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In order to expose the divergencies, let us focus on the a dependence of the terms that
appear in the above relations. For the renormalized mass we obtain:

m2
R = m2

0 +
g0
2

1

a2
J1(am0) + . . . . (1.131)

For small x:

J1(x) = r0 + x2
�

1

16π2
log y2 + r1 +O(y2)

�
, (1.132)

with r0 = 0.154 . . . and r1 = −0.030 . . . .
Hence we obtain:

m2
R = m2

0 +
1

a2
g0r0
2

+
g0

32π2
m2

0 log(am0) +
g0
2
r1m

2
0 + . . . . (1.133)

Eq. (1.133) shows explicitly the quadratic and logarithmic divergencies in the mass, which
need to be cancelled by appropriately divergent counterterms in the action. On the other
hand Eq. (1.127) tells that the bare mass m0 has to be fine-tuned in order for the system to
be at criticality, i.e. in order to have amR → 0:

(am0)
2 → g0

2
r0 +O(g20) . (1.134)

we have obtained a relation between the bare parameters appearing in the lattice action,
which defines a critical line in the space of bare theories. Expressed in terms of the hopping
parameter we get:

κ → κc =
1

8
+

�
3r0 −

1

4

�
λ+O(λ2) . (1.135)

To approach a fixed point of the RG, we need to tune the bare mass, which is a relevant
operator.

Let us now consider the renormalized charge. From the small-x behaviour of J2(x), we
find:

gR = g0 +
3

32π2
g20 log(a

2m2
0) +

3

2
g20(

1

16π2
+ r1) + . . . , (1.136)

where the logarithmic divergence is clearly visible.
The relations between gR,mR and g0,m0 can be inverted, and yields:

m2
0 = m2

R − 1

a2
J1(amR) +O(g2R) , (1.137)

g0 = gR +
3

2
g2RJ2(amR) +O(g3R) . (1.138)
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The results for the vertex functions as functions of mR and gR are all finite in the limit a → 0.
Finally let us discuss in this framework the fate of higher-dimensional interactions. Note

that in the bare action at the cutoff scale we have not introduced higher-dimensional opera-
tors, e.g. there is no φ6 term. However these interactions are generated by loop corrections.
The six-point vertex function at one-loop is given by the diagram in Fig. 1.4:

�
1

2κ

�3

Γ(6)(0, . . . , 0) = −15g30J3(am0) +O(g40) . (1.139)

Figure 1.4: Contribution to the six-point vertex function up to one loop.

Had we started with a non-zero value η0 for this coupling, we would have:

�
1

2κ

�3

Γ(6)(0, . . . , 0) = η0 − 15g30J3(am0) +O(g40) . (1.140)

The coupling η0 in four dimensions has dimension [η0] = −2. If we require the low-energy
physics to stay invariant as we change the cutoff, we obtain:

η0 − a215g30J3(am0) = η�0 − a� 215g� 30 J3(am0) . (1.141)

The evolution of the dimensionless couplings can be read from the equation above by con-
sidering the appropriate dimensionless combinations:

�
a� −2η�0

�
= s−2

�
a−2η0

�
+ 15

�
g� 30

(a�m�
0)

2
− s−2 g30

(am0)2

�
+O(g40)

= s−2
�
a−2η0

�
+O(g40) . (1.142)

We see explicitly in this example that the value of η0 flows to zero as s−2 independently of
the initial value at the cutoff scale. The six-point coupling in four dimensions is irrelevant.
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1.11 Triviality of the continuum limit

The perturbative computations above yield a relation between the renormalized couplings,
the bare ones, and the UV cutoff of the theory. The dependence of the renormalized coupling
on the cutoff for fixed bare coupling is encoded in the Callan-Symanzik equation, which in
our case can be obtained from Eq. (1.136):

β(gR) =
3

16π2
g20 +O(g30) =

3

16π2
g2R +O(g3R) . (1.143)

Higher orders in perturbation theory yield:

β(gR) = β0g
2
R + β1g

3
R + . . . . (1.144)

The first two coefficients do not depend on the regularization scheme:

β0 =
3

16π2
, β1 = − 17

3(16π2)2
. (1.145)

The behaviour of the renormalized coupling as we approach the continuum limit can be
obtained by integrating the Callan-Symanzik equation:

a = C exp [−1/(β0gR)] g
−β1/β

2
0

R
(1 +O(gR)) . (1.146)

Hence:

lim
a→0

gR(a)
���
g0

∼ lim
a→0

1

log a
= 0 . (1.147)

Perturbation theory suggests that gR vanishes when we take the continuum limit. This
property of the scalar field theory in four dimensions goes under the name of triviality. Of
course it would be desirable to have a nonperturbative proof of triviality, i.e. a proof that
does not rely on being in a neighbourhood of g0 = 0. Lüscher and Weisz studied this problem
in a series of papers, and did not find any evidence of a nontrivial fixed point.

1.12 Symanzik effective theory

As the lattice theory approaches a continuum limit, the separation between the cutoff scale
and the physical scales becomes increasing large. In this regime, we expect to be able to
describe the lattice theory with a continuum effective theory, i.e. a theory defined directly in
the continuum, with higher dimensional (irrelevant) operators added to the action in order
to mimick the cutoff effects. All operators that are compatible with the symmetries of the
lattice action should be added to the low-energy effective theory.
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Once again we can discuss this phenomenon in the simple context of the free field theory.
For a complete discussion, the reader is referred to the recent lectures by P. Weisz. 4

The lattice propagator was derived in Eq. (1.48):

∆(p) =
1�

µ

4
a2

sin2
�
pµa

2

�
+m2

0

. (1.148)

For small momenta (pµa � 1):

�

µ

4

a2
sin2

�pµa
2

�
= p2 − 1

12
a2

�

µ

p4µ +O(a4) . (1.149)

Let us consider now the low-energy effective theory. In the continuum limit the only
operators of dimension D that are symmetric under the hypercubic symmetry group of the
lattice theory are:

S[φ] =

�
dDx

1

2

�
∂µφ∂µφ+m2

0φ
2
�
. (1.150)

If we want to reproduce theO(a2) effects in Eq. (1.149), we need to add operators of dimension
D+2 to the action. Again taking into account the symmetry of the lattice action, and using
the equations of motions to reduce the admissible operators, we end up with a single term:

a2S1 = −ca2
�

dDx
�

µ

∂2
µφ∂

2
µφ . (1.151)

This term is not symmetric under the continuum Euclidean O(4) group, but is symmetric
under the hypercubic group. The two-point function computed with the effective action is:

∆(p) = Z−1
�

Dφe−S−a
2
S1φ(p)φ(0)

=
1

p2 +m2
0

− a2�S1φ(p)φ(0)�+O(a4) . (1.152)

You can check that if you choose c = 1/12, then the propagator in the continuum effective
theory reproduces the lattice one at the chosen order in powers of a.

Symanzik conjectures that there exists a continuum low-energy description for a large
class of interacting lattice theories.

The discussion above shows why the continuum O(4) symmetry is automatically recovered
in the continuum limit without the need for fine tuning. Indeed the first operators that
are invariant under the hypercubic group, but not under O(4) are irrelevant operators of
dimension 6, and their contribution is suppressed by powers of the cutoff. A symmetry that
arises naturally in the low-energy limit is called an emergent symmetry.

4P. Weisz, lectures in “Modern Perspective in Lattice QCD”, Oxford University Press, 2011.
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1.13 Numerical simulations

First-principle results beyond perturbation theory can be obtained by evaluating the Schwinger
functions numerically with numerical simulations. The analogy between Euclidean QFT and
statistical mechanics is fully exploited in numerical simulations, where the path integral is
computed by importance sampling. The field correlators:

�O[φ]� = 1

Z

�
Dφe−SE [φ]O[φ] , (1.153)

are computed by generating an ensemble of field configurations {φi} distributed according
to the Boltzmann weight:

p[φi] ∝ e−SE [φi] . (1.154)

The expectation value is then computed by taking the average over the ensemble:

�O� = Ō =
1

Ncnfg

Ncnfg�

i=1

O[φi] +O(1/
�
Ncnfg) , (1.155)

where we have denoted by Ō the average over configurations.
Markov processes are used in order to generate the ensemble with the correct probability

distribution. These are recursive procedures that generate the field configurations according
to some specified algorithm, which yields asymptotically the desired probability distribution.
It is possible to show under some very general assumptions that the probability distribution
of the states along the Markov chain converges exponentially to the equilibrium distribution.
The convergence is characterized by a number of step τ that are needed for the system to
“thermalize”. After thermalization, the configurations can be used to compute expectation
values according to the prescription in Eq. (1.155). The number τ is known as the exponential
autocorrelation of the Markov chain.

The configurations generated by a Markov chain are correlated by construction. As a
result the variance of the average over configuration is larger than it would be for independent
configurations:

Var[Ō] = Var[O]

�
2τO
Ncnfg

�
. (1.156)

τO is called the integrated autocorrelation time, and depends on the observable under con-
sideration. We refer e.g. to M.Lüscher’s lectures 5 for a quantitative definition of τO. The

error on the estimator is reduced like N−1/2
cnfg . The variance of the observable

Var[O] = �(O − �O�)2� , (1.157)

5M. Lüscher, lectures in “Modern Perspective in Lattice QCD”, Oxford University Press, 2011.
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is a property of the QFT and has no relation with the Markov chain used to generate the
ensemble of configurations. The correlation between configurations increases the variance of
the estimator Ō, and depends strongly on the simulation algorithm.

Numerical simulations are necessarily performed on finite lattices. We will assume in the
rest of this section that the lattice has a finite spatial volume V = L3, and infinite extent
in the Euclidean time direction. We can get some feeling for the dynamics of finite-volume
effects by revisiting the perturbative computations discussed in the section above.

Clearly the fact that the theory is defined in a finite volume changes the integrals over
spatial momenta into sums over multiples of 2π/L. Therefore we can write the renormalized
mass at one-loop in perturbation theory with little effort:

(amR(L))
2 = (am0)

2 =
g0
2
J1(am0, L/a) +O(g20) , (1.158)

where the loop integral has been replaced by:

Jn(am,L/a) =
1

V

�

p

�
dp4
2π

(p̂+ a2m2
0)

−n . (1.159)

Hence the difference in the renormalized mass:

(amR(L))
2 − (amR)

2 =
g0
2
[J1(am0, L/a)− J1(am0,∞)] +O(g20) . (1.160)

These finite-volume shifts can be re-expressed in terms of the renormalized couplings, using
the asymptotic behaviour of J1 and J2 for large L/a:

δ(amR(L))
2 =

gR
2
6(am2

∗)(2πm∗L)
−3/2e−mL

�
1 +O(L−1)

�
, (1.161)

δgR(L) = −3

2
g2R

3

2
(m∗L)(2πm∗L)

−3/2e−mL
�
1 +O(L−1)

�
. (1.162)

The infinite-volume limit is approached exponentially for both quantities. The mass ap-
proaches the thermodynamic limit from above, while the renormalized coupling does it from
below.


