what do we really know about the Higgs sector?

The "established" SM

- Observed" fields:
 - ${oldsymbol o}$ Gauge bosons: $g^A_\mu ~ W^a_\mu ~ B_\mu$
 - \bullet Femions: Q_i u_i^c d_i^c L_i e_i^c
 - Scalar (Goldstones): G_a
 - Scalar (?) (physical): h

from $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ long. part of massive gauge bosons

custodial symmetry singlet

Callan Coleman Wess Zumino PRD 177 1969

Manohar 9606222 Colangelo Isidori 0101264 Ecker 9501357

Contino 1005.4269

The "established" lagrangian

- Most general gauge invariant lagrangian for the observed fields
 - S L_{SM} = L_{EW} + L_{EWSB} + L_h
 - O L_{EW} = Gauge bosons, fermions, gauge interactions
 - LEWSB = Goldstone effective lagrangian and interactions
 - $L_h = Higgs$ ("h") lagrangian (including interactions with what above)
- The SM Higgs is a special, especially appealing case, with
 - \odot \checkmark exact unitarization

 - X hierarchy problem (see below)

 $\Sigma(x) = \exp(i\sigma^a \chi^a(x)/v)$ $\Sigma \to U_L(x) \Sigma U_Y^{\dagger}(x)$

$$\mathsf{Lewsb} = \frac{v^2}{4} \operatorname{Tr} \left[\left(D_{\mu} \Sigma \right)^{\dagger} \left(D^{\mu} \Sigma \right) \right] - \frac{v}{\sqrt{2}} \sum_{i,j} \left(\bar{u}_L^{(i)} d_L^{(i)} \right) \Sigma \begin{pmatrix} \lambda_{ij}^u \, u_R^{(j)} \\ \lambda_{ij}^d \, d_R^{(j)} \end{pmatrix} + h.c.$$

+
$$\operatorname{ar} v^2 \operatorname{Tr} \left[\Sigma^{\dagger} D_{\mu} \Sigma \sigma^3 \right]^2$$

+ $\operatorname{O}(p^4)$
 $\Gamma \approx I \Rightarrow \operatorname{ar} \approx 0$
 $SU(2)_L \times SU(2)_R$
 $\Sigma \rightarrow U_L \Sigma U_R^{\dagger}$

2 problems:

I) The theory is strongly interacting at TeV

(while EWPT seem to indicate that strong interactions can appear only above about 5 TeV)

2) The H-like dof found at LHC is missing

Add scalar h, SU(2)_LxSU(2)_R singlet

$$L_{h} = \frac{1}{2} (\partial_{\mu}h)^{2} + V(h) + \frac{v^{2}}{4} \operatorname{Tr} \left[(D_{\mu}\Sigma)^{\dagger} (D_{\mu}\Sigma) \right] \left(1 + \mathfrak{O} \frac{h}{v} + \mathfrak{O} \frac{h^{2}}{v^{2}} + \dots \right)$$

$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(\bar{u}_{L}^{(i)} d_{L}^{(i)} \right) \Sigma \left(1 + \mathfrak{O} \frac{h}{v} + \dots \right) \left(\begin{array}{c} \lambda_{ij}^{u} u_{R}^{(j)} \\ \lambda_{ij}^{d} d_{R}^{(j)} \end{array} \right) + h.c.$$

Add scalar h, SU(2)_LxSU(2)_R singlet

$$\mathcal{L}_{H} = \frac{1}{2} (\partial_{\mu}h)^{2} + V(h) + \frac{v^{2}}{4} \operatorname{Tr} \left[(D_{\mu}\Sigma)^{\dagger} (D_{\mu}\Sigma) \right] \left(1 + 2a \frac{h}{v} + \mathcal{O} \frac{h^{2}}{v^{2}} + \dots \right)$$

$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(\bar{u}_{L}^{(i)} d_{L}^{(i)} \right) \Sigma \left(1 + c \frac{h}{v} + \dots \right) \begin{pmatrix} \lambda_{ij}^{u} u_{R}^{(j)} \\ \lambda_{ij}^{d} d_{R}^{(j)} \end{pmatrix} + h.c.$$

Add scalar h, SU(2)_LxSU(2)_R singlet

$$\mathcal{L}_{H} = \frac{1}{2} (\partial_{\mu}h)^{2} + V(h) + \frac{v^{2}}{4} \operatorname{Tr} \left[(D_{\mu}\Sigma)^{\dagger} (D_{\mu}\Sigma) \right] \left(1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \dots \right)$$

$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(\bar{u}_{L}^{(i)} d_{L}^{(i)} \right) \Sigma \left(1 + \mathfrak{O}_{v}^{h} + \dots \right) \begin{pmatrix} \lambda_{ij}^{u} u_{R}^{(j)} \\ \lambda_{ij}^{d} d_{R}^{(j)} \end{pmatrix} + h.c.$$

$$a = b = c = 1$$

$$H(x) = \frac{1}{\sqrt{2}} e^{i\sigma^a \chi^a(x)/v} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}$$

L_H = SM Higgs + Yukawa lagrangian

Higgs as a pseudo-NGB

- a ≠ 1, b ≠ 1, c ≠ 1 can be a sign of composite Higgs:
 Λ_{strong} just pushed higher than TeV (better for EWPT)
- Composite Higgs welcome as a solution of the hierarchy problem (trade-off between HP and EWPT)
- Why $m_H \ll \Lambda_{strong}$?
- Perhaps for the same reason why $m_{\pi} \ll \Lambda_{QCD}$ H pseudo-NGB of approximate global symmetry of strong dynamics at $\Lambda_{strong} \gg m_H$

Composite Higgs and extra dimensions

Composite Higgs

$\circ Q_{\text{strong}} \gtrsim \sqrt{c_i} \cdot 5 \,\text{TeV} \approx 5 \,\text{TeV}$

Why m_h « Q_{strong}? Because h is the pseudo-NGB of some global symmetry (protected by shift symmetry h(x)→h(x)+c)
 Georgi Kaplan 84]
 The global symmetry must however be explicitly broken by λ_t λ_H g:

$$\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\rm NP}^2 = m_h^2 \left(\frac{Q_{\rm NP}}{0.5 \,{\rm TeV}}\right) \text{ for } m_h = 115 \,{\rm GeV}$$

- Little Higgs: keeping the effect of explicit breaking under control
 - \circ no $Q^2_{\rm NP}$ ad 1-loop ("collective breaking")

[Arkani-Hamed Cohen Georgi 01, Arkani-Hamed Cohen Katz Nelson Gregoire Wacker 02]

- the top (gauge, Higgs) loop must be cancelled at a lower scale (= global symmetry breaking scale f « Q_{strong}) by same statistics partners
- Still not as nice as supersymmetry as far as EWPTs are concerned: T-parity + a partner for each SM fermion
- OUV completion? (see below)

[Marandella Schappacher Strumia hep-ph/0502096]

Z₂ parity (boundary conditions)

Can be used to break symmetries in a novel way

Gauge symmetries can be broken "on the boundaries"

Boundary conditions for

5D fermions: chirality

Ø 5D vectors: massless (tree level) 4D scalars ↔ broken generators ↔ pseudo Goldstone bosons

RS

- S^1/Z_2 5D model with curved 5th dimension: $ds^2 = e^{-2ky} dx^2 + dy^2$
- IR redshift of energies: $y = \pi R$ (IR brane) wrt y = 0 (UV brane)
- All scales are $O(M_{Pl})$, including k,1/R, within O(10) factor
- Fields localized near UV see $O(M_{Pl})$, near IR see $O(M_{Pl})e^{-2\pi kR}$

- Solution of hierarchy problem if the graviton is near UV, the Higgs is near IR
- SM in the bulk (instead of on the IR brane as in original RS)
 - eases FCNC problem
 - ø gives (very) hierarchical fermion masses
- Oual description: fields near IR are mostly composite

Warping and compositeness

E

CFT

(dual to AdS)

a few weakly

coupled KK

SM

 $Q_{strong} = \Lambda_{IR}$

QNP = MKK

<H> = 174 GeV

- Extra-dims accessible at LHC and compositeness together with high scale extrapolation
- RS + bulk fermions + H as (A₅)₀ + deconstruction = Little Higgs + UV completion
- Flavour, 4D dual
 UV brane: elementary dofs
 IR brane: composite dofs (H, t_R)
- Gauge coupling unification in a novel way (but limited calculability)

[Contino Nomura Pomarol hep-ph/0306259 Agashe Contino Pomarol hep-ph/0412089 hep-ph/0605341]

 $k/M_{Pl} = 0.1$: m_G > 1.85 TeV ($\gamma\gamma$ only) m_G > 1.95 TeV (combined)

Expected and observed 95% CL limits from the combination of $G_1 \rightarrow \gamma \gamma /ee/\mu \mu$ channels on the product of the RS graviton production cross section and the branching ratio for graviton decay via $G_1 \rightarrow \gamma \gamma /ee/\mu \mu$

