

This talk: after the observation...

First observations of a new particle in the search for the Standard Model Higgs boson at the LHC

UK HEP forum 22 Nov 2012

The CMS detector

CMS: 3000 scientists from 40 countries

Scintillating crystals

CMS cut in mid-plane

Gas ionization chambers

LHC is delivering luminosity

CMS Integrated Luminosity, pp

Larger dataset = increased sensitivity

- Low mass (i.e. near 125 GeV)
 - Analyses of five decay modes
 - Confirmation of observation and start of study of properties

Decay modes and production tags

Decay	m _H range (GeV)	Mass resolution	L (fb ⁻¹) 7 TeV	L (fb ⁻¹) 8 TeV	
γγ	110-150	1-2%	5.1	5.3	
ZZ→4l	110-1000	1-2%	5.0	12.1	
WW→lvlv	110-600	20%	4.9	12.1	
bb	110-135	10%	5.0	12.1	
ττ	110-145	20%	4.9	12.1	

 A few other, additional, subchannels are studied outside the low mass region

Decay	No tag	VBF-tag	VH-tag	ttH-tag
γγ	~	~		
ZZ→4l	~			
WW→lvlv	~	~	~	
bb			~	~
ττ	~	~	~	

$$H \rightarrow \gamma \gamma - no update since ICHEP$$

- Key elements in search strategy:
 - Narrow mass peak
 - Separate events into classes based on resolution and inclusive S/B
 - In CMS both energy resolution and inclusive S/B vary in a similar way with respect to:
 - \succ pseudorapidity, η
 - > photon conversion flag
 - Background modeled from data
 - Signal model from MC

 Multivariate analysis makes use of information about energy resolution, including vertex finding probability, and inclusive S/B, to classify events

- Significance of 4.1 observed at 125 GeV (2.8 expected)
- Best fit signal strength $\sigma/\sigma_{SM} = 1.56 \pm 0.43$

$H \rightarrow ZZ$

- Four isolated high p_T leptons (p_T(μ)>5, p_T(e)>7 GeV)
 - From common vertex
 - Opposite sign pairs consistent with Z decays
 - Background ~flat for m₄₁ ~ 125 GeV
 - Irreducible non-resonant ZZ well understood: model from theory

4 4 0 0 E O - 1

Reducible (Z+X, Zbb, top) – model from data⁰₂₂

	$121.5 \le m_{41} \le 130.5 \text{ GeV}$				
	Exp. Bkg.	m _H = 126	Data		
4e	1.25	2.20	3		
4μ	2.09	4.26	6		
2e 2μ	3.14	5.97	8		
Total	6.48	12.43	17		

UK HEP forum 22 Nov 2012

 Detailed kinematic information, dilepton masses and five decay angles, can be exploited to provide further discrimination between signal and background

- Significance at $m_{H} = 126 \text{ GeV}$: 4.5 (5.0 expected)
- Signal strength, $\sigma/\sigma_{SM} = 0.80^{+0.35}_{-0.28}$

- Mass measurement: 126.2 ± 0.6 (stat) ± 0.2 (syst) GeV
- Under the assumption of spin 0, the data disfavour the 0⁻ (pseudoscalar) hypothesis with a CL_s value of 2.4%
 - (Data are consistent with 0⁺)

• Exclusion at 95% CL in the mass range $129 < m_{H} < 720$ GeV

$H \rightarrow WW$ $H \rightarrow \Lambda \Lambda$

- Search for: 2 opposite sign leptons (e or μ) + E_T^{miss}
- No mass peak background estimation plays key role
- New since ICHEP (for 8 TeV data):
 - 2D shape analysis (m_{ll}, m_T) used for the most sensitive categories (different flavour 0 and 1-jet)

	0-jet	1-jet	2-jet
DF: eμ	2D shape	2D shape	Cut and count
SF: ee, μμ	Cut and count	Cut and count	Cut and count

- p_T(l₁) > 20, p_T(l₂) > 10 GeV
- p_T(jets) > 30 GeV
- Pre-selection pays particular attention to:
 - Rejection of Z+jets background (mass cut, dedicated MVA etc)
 - Rejection of top background (soft muon veto, jet anti-b-tagging)
 - Rejection of non resonant WW (require small $\Delta \phi_{ll}$)

2-jet selection

optimized to tag

VBF production

$H \rightarrow WW \rightarrow l_V l_V - background estimation$

- WW: (for m_H < 200 GeV) estimate in m₁₁ > 100 GeV control region, and extrapolate to signal region with simulation
- Top: estimate by counting top-tagged events, and independently determining top-tagging efficiency
- W+jets: estimate from "tight-loose" dilepton control sample and apply efficiency, ε_{loose} (measured independently)
- Z+jets: count events in tight mass window round m_z, and extrapolate using simulation
- Other backgrounds from simulation

$H \rightarrow WW \rightarrow l_V l_V - cut and count$

Cuts, tuned for each m_{H} , applied on these three variables:

Example of 0-jet, eµ final state – table shows three mass hypotheses

m _H	signal	WW	WZ+ZZ	top	W+jets	W γ*	Sum	data
125	58 ± 12	203 ± 19	6.6 ± 0.6	11.0 ± 2.5	44 ± 16	25.6 ± 9.5	291 ± 27	349
200	95 ± 21	204 ± 19	6.3 ± 0.6	28.9 ± 6.4	7.7 ± 3.5	1.3 ± 0.9	278 ± 21	309
600	6.6 ± 2.3	42.2 ± 4.8	2.5 ± 0.3	16.5 ± 3.8	4.4 ± 2.0	2.4 ± 1.8	67.9 ± 6.7	64

- Separation of signal and background in two dimensions
- Improves analysis sensitivity since 2D distribution of main backgrounds differs from that of signal

 (m_{ll}, m_T) signal and background models, and data in 0-jet bin

$H \rightarrow WW \rightarrow l_V l_V - 2D$ -shape – 0-jet bin

The 2D distribution "unrolled" for detailed examination

$H \rightarrow WW \rightarrow l_V l_V - 2D$ -shape - 1-jet bin

The 2D distribution "unrolled" for detailed examination

$H \rightarrow WW \rightarrow l_V l_V - sensitivity of cats.$

CMS preliminary L = 12.1 fb^{-1} (8TeV) 95 % CL limit on σ/σ_{SM} DF 0jet 2D DF 1jet 2D DF 2jet cut-based SF 0jet cut-based SF 1 jet cut-based SF 2jet cut-based All channels combined 6 2 0 110 115 120 125 130 135 140 M_H (GeV)

- The $e\mu$ (different flavour) 2D provides most of the sensitivity

$H \rightarrow WW \rightarrow l_V l_V - results$

- Excess in low mass region
- For m_H = 125 GeV:
 - Significance: 3.1 (exp.: 4.1)
 - Best fit signal strength $\sigma/\sigma_{SM} = 0.74 \pm 0.25$
 - Expected limit in the presence of m_H = 125 GeV shown as red hatched area

- Tau leptons detected by:
 - decays to electrons or muons: τ_e, τ_μ
 - decays to hadrons: τ_h
 - Reconstructed as either: a single charged track, a charged track plus calorimeter energy, three charged tracks
- Five final states used:

$$\tau_{\mu}\tau_{\mu}, \tau_{\mu}\tau_{e}, \tau_{\mu}\tau_{h}, \tau_{e}\tau_{h}, \tau_{h}\tau_{h}$$

- Performance of tau (τ_h) reconstruction:
 - Reconstruction efficiency > 60% (flat for $p_T(\tau)$ > 30GeV), fake rate 1-3%
 - Efficiency and momentum resolution almost independent of pileup
- Invariant mass of di-tau system is determined using a maximum likelihood method for assignment of E_T^{miss}

$H \rightarrow \tau \tau$ – event categories

 Fit to m_π distribution, using templated background, and signal +background models

$H \rightarrow \tau \tau - background modeling$

- Ζ→ττ
 - Estimated from Z→µµ with muon replaced by simulated tau decay – normalization from Z→µµ
- QCD
 - Shape and normalization from LS/OS or fakerate
- Z→ee(/μμ)
 - From simulation: POWHEG, corrected for measured rates for jets and e/(μ) to fake a τ
- Diboson/W+jets
 - From simulation: MADGRAPH, normalization from sideband
- ttbar
 - From simulation:MADGRAPH, normalization from sideband

$H \rightarrow \tau \tau - after fit (VBF category)$

22 Nov 2012

Shaded bands correspond to uncertainties after fit

$H \rightarrow \tau \tau$ – sensitivity by cat. and mode

- Jet categories not very dissimilar in sensitivity at m_H = 125 GeV
- Most sensitive decay mode is $\tau_{\mu}\tau_{h}$

 Result compatible with both background only hypothesis and with Higgs signal at 125 GeV

$H \rightarrow \tau \tau - signal strength$

- Best fit signal strength, for $m_H = 125$ GeV, is $\sigma/\sigma_{SM} = 0.72 \pm 0.52$
- Significance of excess for $m_H \approx 125$ GeV is: 1.8 (expected is 2.1)

- Using final states: eτ, μτ, eμ, μμ
- Define *b*-tagged:

 \geq 1 *b*-jets with p_T > 20 GeV/c < 2 jets with p_T > 30 GeV/c

and not-b-tagged categories:

No *b*-jets with $p_T > 20$ GeV/c

 The analysis targets enhanced coupling to *b*-quarks at large tan(β)

UK HEP forum 22 Nov 2012

$H \rightarrow bb$ $H \rightarrow bb$

H→bb – overview

- Very large branching ratio, and very large background
- Search for associated production: $VH \rightarrow Vbb$

- Five final states depending on W/Z decay
- Trigger on leptons and E_T^{miss}
- *b*-jets identified by track impact parameters and secondary vertices
- Main backgrounds: V+jets, tt
- Enhance S/B by selecting high p_T(V) dividing into low/high p_T(V) categories

- *b*-jet energy regression BDT trained on simulated VH signal events (new since ICHEP2012)
- Mass resolution improved by ~15%
 - 10-20% improvement in sensitivity

 Results are obtained from a fit to the shape of the BDT output

Entries / 0.10

10⁵

10

 10^{3}

10²

10

10

2 1.5 1.5 0.5

2

1.5

-1

BDT distributions

- Examples for high $p_T(W/Z)$ categories
- An excess of events is observed at high **BDT score in all categories**

თ

Entries / 0.1

10⁵

10

10⁶

10²

10 E

10

2 1.5 Data/WC 1.5 0.5

2

-1

-0.8

1

CMS Preliminary

 $\sqrt{s} = 8$ TeV, L = 12.1 fb⁻¹

Z(e⁻e⁺)H(bb)

 $\chi^2 = 1.333 \text{ K}_s = 0.667$

-0.6

-0.4

Data

VH

Z + bb Z+udsca

W + bb W+udscg

tī Sinale top

VV VH (125 GeV)

WWW MC uncert. (stat.)

Imperial College Iondon

-0.8

 $\chi^2 = 1.080 \text{ K}_s = 0.745$

-0.6 -0.4

-0.2

0

0.2

0.4

0.6

0.8

BDT output

CMS Preliminary

 $\sqrt{s} = 8$ TeV, L = 12.1 fb⁻¹

W(μν)H(bb)

UK HEP forum 22 Nov 2012

-0.2

W/ZH, H→bb – results

- Significance of excess for $m_H \approx 125$ GeV is: 2.2 (expected is 2.1)
- There is, additionally, a $ttH \rightarrow bb$ analysis for the 7 TeV data

Combination...

Combined results

Observed significance of excess, evaluated for m_H = 125.8 GeV:
6.9 (expected: 7.8)

Combined results – mass

Mass measurement: 125.8 ± 0.4 (stat) ± 0.4 (syst) GeV

• Best fit signal strength, $\sigma/\sigma_{SM} = 0.88 \pm 0.21$

Combined results – couplings

- Framework from the Higgs XSWG, based on effective field theory approach (arXiv 1209.0040)
- Couplings largely consistent with SM

Imperial College London UK HEP forum 22 Nov 2012

- The significance of the signal near 125 GeV is now 6.8 standard deviations
- The mass of the observed particle is measured to be 125.8 ± 0.4 (stat) ± 0.4 (syst) GeV
- Some excess starting to show in the fermionic decay modes, although results are still compatible with both a background only hypothesis and SM Higgs near 125 GeV
- The signal strengths and couplings are consistent with expectations for a SM Higgs boson (well within two standard deviations)

Additional material

H → γγ event classes

Imperial College London

UK HEP forum 22 Nov 2012

Events with 121.5 < m₄₁ < 130.5 GeV

Distribution of events in m_{Z1}, m_{Z2} now agreeing well with expectation

UK HEP forum 22 Nov 2012

$H \rightarrow ZZ$ including $2l2\tau$ final state

 Search also for the final state 2l2τ in the mass range 180–1000 GeV

- Associated production with vector boson also studied
 - With W/Z decaying to e or μ

p-values – full mass range

Observed significance of excess, evaluated for m_H = 125.8 GeV:
6.9 (expected: 7.8)