Impact of Flavour Measurements

Alexander Lenz

IPPP

Content

Motivation for Flavour Physics

- Status before LHC
 - CKM paradigm works very well
 - Several intriguing hints for New Physics!
- Status in November 2012 No $\tan \beta M_A$ -plots
 - No convincing hints for New Physics!
 - CKM paradigm and QCD work even better
 - Unexpected results from the Charm sector
- Outlook/Wishlist
 - Higher Precision in Experiment needed
 - Higher Precision in Theory needed

Motivation I

symmetric initial conditions (Inflation: initial asymmetry is wiped out)

 $\Rightarrow N_{matter} = N_{antimatter}$

But we exist and stars and...

Search for annihilation lines, nucleosynthesis, CMB,...

Search for annihilation lines, nucleosynthesis, CMB,...

Search for annihilation lines, nucleosynthesis, CMB,...

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6 \cdot 10^{-10}$$

How can this be created from symmetric initial conditions?

Search for annihilation lines, nucleosynthesis, CMB,...

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6 \cdot 10^{-10}$$

How can this be created from symmetric initial conditions?

1967 Sakharov: The fundamental laws of nature must have several properties, in particular

CP-violation: 1964 Kaons (NP '80); 2000 B-Mesons; 2011 Charm

Can our fundamental theory cope with these requirements?

Motivation III - Our fundamental theory

The Standard Model = Elegant description of nature at per mille precision

UK HEP Forum, The Coseners not

Motivation IV - Our fundamental theory

Finally Higgs seems to be found

also Englert, Brout; Guralnik, Hagen and Kibble

Motivation V - Our fundamental theory

Elegant description of nature at per mille level SM Fit: Eberhardt et al 1209.1101; see also GFitter 1209.2716

Electroweak precision tests

Motivation VI - Our fundamental theory

Elegant description of nature at per mille level

• CKM-mechanism NP 2008

How can CP-violation be incorporated in the SM? 1972 only u,d and s-quarks were known, Kobayashi and Maskawa postulated six quarks!

Status before LHC - CKM matrix I

Good overall consistency

Fit from CKMfitter 2012 see also UTfit 1010.5089, Lunghi/Soni 1010.6069, Laiho/Lunghi/Van de Water 1102.3917, PDG, HFAG ...

NP 2008

Status before LHC: CKM matrix II

UK HEP Forum, The Cosener's House

Status before LHC: *V*_{*ub*}**-problem**

Exclusive $|V_{ub}| = 0.00351 \pm 0.00047$ Inclusive $|V_{ub}| = 0.00432 \pm 0.00027$ $B \rightarrow \tau \nu$ $|V_{ub}| = 0.00504 \pm 0.00064$ Fit $|V_{ub}| = 0.00356 \pm 0.00020$

HFAG; HPQCD 2007; MILC Fermilab 2008;Ball/Zwicky 2005; Lange/Neubert/Paz 2005; Andersen/Gardi 2006,2008; Gambino/Giordano/Ossola/Uraltsev 2007; Aglietti/Di Lodovico/Ferrera/Ricciardi 2009; Aglietti/Ferrera/Ricciardi 2007; Bauer/Ligeti/Luke 2001,...

- V_{ub} is actually of order λ^4 and not λ^3 : $0.00356 = (0.2254)^{3.79}$
- Hadronic uncertainties (lattice, LCSR) underestimated?
- Soni and Lunghi: do not to use V_{ub} in the global fit
- Crivellin0907.2461; Buras/Gemmler/Isidori 1007.1993: RH currents \Rightarrow incl. \neq excl.
- New Physics in $B \rightarrow \tau \nu$ vs. B_d -mixing

Status before LHC: A new clue to explain existence I

- 17.5.2010 New York Times A new Clue to explain existence
- 19.5.2010 BBC News New Clue to anti-matter mystery
- 20.5.2010 Scientific American Fermilab finds new mechanism for matter's dominance over antimatter
- 20.5.2010 The Times Atom-smasher takes man closer to heart of matter
- 25.5.2010 Spiegel Neue Asymmetrie zwischen Materie und Antimaterie entdeckt
- 28.5.2010 Science Hints of greater matter-antimatter asymmetry challenge theorists
- 28.5.2010 Die Zeit Rätselhafte Asymmetrie
- 29.5.2010 Chicago Tribune Fermilab test throws off more matter than antimatter - and this matters

....

Status before LHC: A new clue to explain existence II

1005.2757 Dzero (submitted sunday, 16.5.2010) 222 citations

PHYSICAL REVIEW D **82,** 032001 (2010)

Evidence for an anomalous like-sign dimuon charge asymmetry

V. M. Abazov,³⁶ B. Abbott,⁷⁴ M. Abolins,⁶³ B. S. Acharya,²⁹ M. Adams,⁴⁹ T. Adams,⁴⁷ E. Aguilo,⁶ G. D. Alexeev,³⁶

We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb⁻¹ of $p\bar{p}$ collisions recorded with the D0 detector at a center-of-mass energy $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: $A_{sl}^b =$ -0.00957 ± 0.00251 (stat) ± 0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction $A_{sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$ and provides first evidence of anomalous *CP* violation in the mixing of neutral *B* mesons.

DOI: 10.1103/PhysRevD.82.032001

PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd

- [1] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007) 072.
- [2] C. Amsler *et al.*, Phys. Lett. B **667**, 1 (2008), and 2009 partial update for the 2010 edition.
- [15] V. M. Abazov *et al.* (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).
- [16] S.N. Ahmed *et al.*, arXiv:1005.0801 [Nucl. Instrum. Methods Phys. Res. Sect. A (to be published)]; R.

17.5.'10 NYT: "A new clue to explain existence" ($111 \cdot 10^6$ google entries)

■ 1106.6308: 9 fb⁻¹, $A_{sl}^b = (-0.787 \pm 0.172(stat) \pm 0.093(syst))\% \Rightarrow 3.9\sigma$

Status before LHC: Overview

- Overall consistency of the CKM picture is very good
 - Mechanism awarded with the Nobel prize
 - Also agreement on loop-level e.g. $b \to s \gamma$
 - Still higher precision necessary Current constraints still allow $V_{u'b} > V_{ub}$ and $V_{c'b} > V_{cb}$ V_{td} and V_{ts} more or less unconstrained
- Several interesting deviations from the CKM picture have arisen
 - Evidence for new physics in *B*-mixing: Dimuon asymmetry; $B_s \rightarrow J/\psi\phi...$
 - Problems with $\sin 2\beta$ V_{ub} $B \rightarrow \tau \nu$
 - CDF has hints for a large $B_s \rightarrow \mu\mu$ branching ratio

Status in 11/12: We expected a lot, and then...

UK HEP Forum, The Cosener's Ho

A. Lenz, November 22th 2012 - p. 18

Status in Nov. 2012: $B \rightarrow \tau \nu$

Also new results from Belle 1208.4678 confirm the SM

Is there a similar problem in $B \rightarrow D^{(*)} \tau \nu$? BaBar 1205.5442 or also hadronic uncertainties Becirevic et al 1206.4977

CDF was not confirmed by ATLAS, CMS and LHCb 1211.2674

 $Br(B_s \to \mu\mu) = 3.2^{+1.5}_{-1.2} \cdot 10^{-9} \quad (3.5\sigma)$

This agrees perfectly with the SM expectation

 $Br(B_s \to \mu\mu) = 3.64^{+0.21}_{-0.32} \cdot 10^{-9}$ CKMfitter $Br(B_s \to \mu\mu) = 3.23 \pm 0.27 \cdot 10^{-9}$ Buras et al 1208.0934

This numbers have to be corrected due to

- Finite $\Delta \Gamma_s$: about +10% Fleischer et al. 1204.1735; 1204.1737
- Soft Photons: about: -10% Petrov in April at CERN; Buras et al 1208.0934

Also investigations of the rare decay $B \rightarrow Kll$ confirm the SM, see e.g. Workshop on the physics reach of rare and exclusive B decays (Nov. 2012; University of Sussex) - except Isopsin asymmetry!

Is SUSY killed by LHCb?

Quotes I learnt recently

Absence of evidence is not evidence of absence This was not true for the SM4 (see Djouadi, AL 2012; Eberhardt et al. 2012), but it is true for decoupling theories, like SUSY

SUSY is not dead yet, but it is not showing any sign of life A lot of the parameter space which was considered some years ago, is ruled out by the $B_s \rightarrow \mu\mu$ measurement!

Status in Nov. 2012: B-mixing I

Time evolution of a decaying particle: $B(t) = \exp\left[-im_B t - \Gamma_B/2t\right]$ can be written as

$$i\frac{d}{dt} \left(\begin{array}{c} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{array} \right) = \left(\hat{M} - \frac{i}{2}\hat{\Gamma} \right) \left(\begin{array}{c} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{array} \right)$$

BUT: In the neutral *B*-system transitions like $B_{d,s} \rightarrow \overline{B}_{d,s}$ are possible due to weak interaction: **Box diagrams**

Status in Nov. 2012: Mixing II

Mixing is a macroscopic quantum effect!

It was observed in

- K^0 -system: 1950s (see text books, regeneration...)
- B_d -system: 1986 ΔM_d
- B_s -system: 2006 ΔM_s ; 2012 $\Delta \Gamma_s$
- D^0 -system: 2007 ΔM_D , $\Delta \Gamma_D$

Strongly suppressed in the SM (higher order in weak interaction) New physics effects might be of comparable size

?Is QCD under control?

Status in Nov. 2012: Mixing III

Time evolution of a decaying particle: $B(t) = \exp\left[-im_B t - \Gamma_B/2t\right]$ can be written as $i\frac{d}{dt}\begin{pmatrix} |B(t)\rangle\\ |\bar{B}(t)\rangle \end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right)\begin{pmatrix} |B(t)\rangle\\ |\bar{B}(t)\rangle \end{pmatrix}$ BUT: In the neutral *B*-system transitions like $B_{d,t} \rightarrow \bar{B}_{d,t}$ are possi

BUT: In the neutral *B*-system transitions like $B_{d,s} \rightarrow \overline{B}_{d,s}$ are possible due to weak interaction: **Box diagrams**

 \Rightarrow off-diagonal elements in \hat{M} , $\hat{\Gamma}$: M_{12} , Γ_{12} (complex) Diagonalization of \hat{M} , $\hat{\Gamma}$ gives the physical eigenstates B_H and B_L with the masses M_H , M_L and the decay rates Γ_H , Γ_L

CP-odd: $B_H := p \ B + q \ \bar{B}$, CP-even: $B_L := p \ B - q \ \bar{B}$ with $|p|^2 + |q|^2 = 1$

Status in Nov. 2012: Mixing IV

 $|M_{12}|$, $|\Gamma_{12}|$ and $\phi = \arg(-M_{12}/\Gamma_{12})$ can be related to three observables:

- <u>Mass difference:</u> $\Delta M := M_H M_L = 2|M_{12}| \left(1 \frac{1}{8} \frac{|\Gamma_{12}|^2}{|M_{12}|^2} \sin^2 \phi + ...\right)$ $|M_{12}|$: heavy internal particles: t, SUSY, ...
- Decay rate difference: $\Delta \Gamma := \Gamma_L \Gamma_H = 2|\Gamma_{12}| \cos \phi \left(1 + \frac{1}{8} \frac{|\Gamma_{12}|^2}{|M_{12}|^2} \sin^2 \phi + ...\right)$ $|\Gamma_{12}|$: light internal particles: u, c, ... (almost) no NP!!!

 $\begin{array}{l} \hline \textbf{Flavor specific/semileptonic CP asymmetries:} \\ \hline \bar{B}_q \rightarrow f \text{ and } B_q \rightarrow \bar{f} \text{ forbidden} \\ \hline \textbf{No direct CP violation: } |\langle f | B_q \rangle| = |\langle \bar{f} | \bar{B}_q \rangle| \\ \textbf{e.g. } B_s \rightarrow D_s^- \pi^+ \text{ or } B_q \rightarrow X l \nu \text{ (semileptonic)} \\ \hline a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \rightarrow f) - \Gamma(B_q(t) \rightarrow \overline{f})}{\Gamma(\overline{B}_q(t) \rightarrow f) + \Gamma(B_q(t) \rightarrow \overline{f})} = -2\left(\left|\frac{q}{p}\right| - 1\right) = \text{Im}\frac{\Gamma_{12}}{M_{12}} = \frac{\Delta\Gamma}{\Delta M} \tan\phi \end{array}$

Status 11/12: The Mass Difference ΔM

Calculating the box diagram with an internal top-quark yields

$$M_{12,q} = \frac{G_F^2}{12\pi^2} (V_{tq}^* V_{tb})^2 M_W^2 S_o(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B$$

(Inami, Lim '81)

• Hadronic matrix element: $\frac{8}{3}B_{B_q}f_{B_q}^2M_{B_q} = \langle \overline{B}_q | (\overline{b}q)_{V-A} (\overline{b}q)_{V-A} | B_q \rangle$

Perturbative QCD corrections $\hat{\eta}_B$ (Buras, Jamin, Weisz, '90)

Theory 1102.4274 vs. Experiment : HFAG 12

$\Delta M_d = 0.543 \pm 0.091 \ ps^{-1}$	$\Delta M_d = 0.507 \pm 0.004 \ ps^{-1}$
	ALEPH, CDF, D0, DELPHI, L3,
	OPAL, BABAR, BELLE, ARGUS, CLEO
$\Delta M_s = 17.30 \pm 2.6 \ ps^{-1}$	$\Delta M_s = 17.719 \pm 0.043 \ ps^{-1}$
	CDF, D0, LHCb

Important bounds on the unitarity triangle and new physics

Status 11/12: Determination of Γ_{12}

Sensitive to real intermediate states \Rightarrow much more complicated than M_{12} 1. OPE I: Integrate out W: like $M_{12} \propto f_B^2 B$

2. OPE II: Heavy quark expansion $\Rightarrow \Gamma_i^{(j)} \propto f_B^2 \sum C_k B_K$

$$\Gamma_{12} = \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi}\Gamma_3^{(1)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^5 \left(\Gamma_5^{(0)} + \dots\right) + \dots$$

1996: Beneke, Buchalla, Dunietz; 1998: Beneke, Buchalla, Greub, A.L., Nierste 2003: Ciuchini, Franco, Lubicz, Mescia, Tarantino; Beneke, Buchalla, A.L., Nierste 2006: A.L., Nierste; 2007: Badin, Gabbiani, Petrov

Energy release is small \Rightarrow naive dim. estimate: series might not converge Do a real calculation:

$$\Delta \Gamma_s = \Delta \Gamma_s^0 \left(1 + \delta^{\text{Lattice}} + \delta^{\text{QCD}} + \delta^{\text{HQE}} \right) = 0.142 \, \text{ps}^{-1} \left(1 - 0.14 - 0.06 - 0.19 \right)$$

OPE II might be questionable - relies on quark hadron duality

- Mid 90's: Missing Charm puzzle $n_c^{\text{Exp.}} < n_c^{\text{SM}}$, semi leptonic branching ratio
- Mid 90's: Λ_b lifetime is too short
- before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected), to test convergence ⇒ $\tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

2012: $n_c^{2011\text{PDG}} = 1.20 \pm 0.06 \text{ vs.}$ $n_c^{\text{SM}} = 1.23 \pm 0.08$

Eberhardt, Krinner, A.L., Rauh in prep.

- Mid 90's: Λ_b lifetime is too short
- before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: Di-muon asymmetry too large

Theory arguments for HQE

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected), to test convergence

 $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

2012: $n_c^{2011\text{PDG}} = 1.20 \pm 0.06 \text{ vs.}$ $n_c^{\text{SM}} = 1.23 \pm 0.08$

Eberhardt, Krinner, A.L., Rauh in prep.

- HFAG '03 $\tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '12 $\tau_{\Lambda_b} = 1.413 \pm 0.030 \text{ ps}^{-1}$ Shift by 2.5σ !; ATLAS: $1.45 \pm 0.04 \text{ ps/CMS}$: $1.50 \pm 0.06 \text{ ps}$ Waiting for LHCb!
- before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected), to test convergence $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

2012: $n_c^{2011\text{PDG}} = 1.20 \pm 0.06 \text{ vs.}$ $n_c^{\text{SM}} = 1.23 \pm 0.08$

Eberhardt, Krinner, A.L., Rauh in prep.

- HFAG '03 $\tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '12 $\tau_{\Lambda_b} = 1.413 \pm 0.030 \text{ ps}^{-1}$ Shift by 2.5σ !; ATLAS: $1.45 \pm 0.04 \text{ ps/CMS}$: $1.50 \pm 0.06 \text{ ps}$ Waiting for LHCb!
- Moriond 2012 LHCb: $\tau_{B_s} / \tau_{B_d} = 1.001 \pm 0.014$ LHCb-CONF-2012-002
- 2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected), to test convergence $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

2012: $n_c^{2011\text{PDG}} = 1.20 \pm 0.06 \text{ vs.}$ $n_c^{\text{SM}} = 1.23 \pm 0.08$

Eberhardt, Krinner, A.L., Rauh in prep.

- HFAG '03 $\tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '12 $\tau_{\Lambda_b} = 1.413 \pm 0.030 \text{ ps}^{-1}$ Shift by 2.5 σ !; ATLAS: 1.45 ± 0.04 ps/CMS: 1.50 ± 0.06 ps Waiting for LHCb!
- Moriond 2012 LHCb: $\tau_{B_s} / \tau_{B_d} = 1.001 \pm 0.014$ LHCb-CONF-2012-002
- 2010/2011: Di-muon asymmetry too large Test Γ_{12} with $\Delta \Gamma_s$!

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected), to test convergence $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

 $\Delta \Gamma_s^{\rm SM} = (0.087 \pm 0.021) \, {\rm ps}^{-1}$

A.L., Nierste 1102.4274

LHCb from $B_s \rightarrow J/\psi\phi$ Dunietz, Fleischer, Nierste

$$\begin{split} \Delta \Gamma_s &= (0.116 \pm 0.019) \, \mathrm{ps}^{-1} &: \ \mathsf{LHCb}\text{-}\mathsf{Conf}\text{-}2012\text{-}002 > 5\sigma! \\ \Delta \Gamma_s &= (0.163 \pm 0.065) \, \mathrm{ps}^{-1} &: \ \mathsf{D0} \ \mathsf{8fb}^{-1} \ \mathsf{1109.3166} \\ \Delta \Gamma_s &= (0.068 \pm 0.027) \, \mathrm{ps}^{-1} &: \ \mathsf{CDF} \ \mathsf{9.6fb}^{-1} \ \mathsf{1208.2967} \\ \Delta \Gamma_s &= (0.053 \pm 0.022) \, \mathrm{ps}^{-1} &: \ \mathsf{ATLAS} \ \mathsf{4.9} \ \mathsf{fb}^{-1} \ \mathsf{1208.0572} \end{split}$$

 $\Delta \Gamma_s^{\rm Exp} = (0.089 \pm 0.012) \, {\rm ps}^{-1}$

CKM 2012 F. Dordei LHCb

Status 11/12: Finally $\Delta\Gamma_s$ is measured!

Get rid off the dependence on f_{B_s} (No NP in ΔM)

$$\frac{\Delta\Gamma_s}{\Delta M_s} = 10^{-4} \cdot \left[46.2 + 10.6 \frac{\tilde{B}'_S}{B} - \left(13.2 \frac{B_{\tilde{R}_2}}{B} - 2.5 \frac{B_{R_0}}{B} + 1.2 \frac{B_R}{B} \right) \right]$$
$$= 0.0050 \pm 0.0010$$

HQE vs. Experiment

$$\left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm Exp} / \left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm SM} = 1.00 \pm 0.13 \pm 0.20$$

HQE works also for $\Gamma_{12}!$

- despite small energy release $M_{B_s} 2M_{D_s} \approx 1.4 \text{ GeV}$
- Theoreticians were fighting for 35 years whether there is a violation of quark hadron duality

How precise does it work? 30%? 10%?

Still more accurate data needed! LHCb, ATLAS, CMS?, TeVatron, Super-B(elle)

Apply HQE to quantities that are sensitive to NP
 Apply HQE to quantities in the charm system?

Status 11/12: Semi leptonic CP-asymmetries

SM predictions: A.L., U. Nierste, 1102.4274; A.L. 1108.1218

$$a_{fs}^{s} = (1.9 \pm 0.3) \cdot 10^{-5} \qquad \phi_{s} = 0.22^{\circ} \pm 0.06^{\circ}$$
$$a_{fs}^{d} = -(4.1 \pm 0.6) \cdot 10^{-4} \qquad \phi_{d} = -4.3^{\circ} \pm 1.4^{\circ}$$
$$A_{sl}^{b} = 0.406a_{sl}^{s} + 0.594a_{sl}^{d} = (-2.3 \pm 0.4) \cdot 10^{-4}$$

Experimental bounds

$$\phi_{s} = -51.6^{\circ} \pm 12^{\circ} \quad \text{(A.L., Nierste, CKMfitter, 1008.1593)} \\ = -0.1^{\circ} \pm 5.0^{\circ} \quad \text{LHCb Moriond 2012} \\ a_{fs}^{d} = -(5 \pm 56) \cdot 10^{-4} \quad \text{(HFAG 12)} \Upsilon(4s) \\ \left| \frac{\Delta \Gamma_{d}}{\Gamma_{d}} \right| = (15 \pm 1) \cdot 10^{-3} \quad \text{(HFAG 12)} \\ A_{sl}^{b} = -(7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3} \text{(D0,1106.6308)} \right|$$

$$A^b_{sl}(Exp.)/A^b_{sl}(Theory) = \mathbf{34}$$
 $3.9 - \sigma$ -effect

R

Status 11/12: New Physics in B-Mixing I

$$\Gamma_{12,s} = \Gamma_{12,s}^{\mathrm{SM}}, \qquad M_{12,s} = M_{12,s}^{\mathrm{SM}} \cdot \Delta_s; \qquad \Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$$

For $|\Delta_s| = 0.9$ and $\phi_s^{\Delta} = -\pi/4$ one gets the following bounds in the complex Δ -plane:

Status 11/12: New Physics in B-Mixing II

Combine all data before summer 2010 and neglect penguins fit of Δ_d and Δ_s 1008.1593

• large new physics effects in the B_s -system

• some new physics effects in the B_d -system

Status 11/12: New Physics in B-Mixing III

Combine all data till Moriond and neglect penguins fit of Δ_d and Δ_s 1203.0238v2

Fits not so good anymore (LHCb vs. Dzero) - still sizeable room $B \rightarrow \tau \nu$ vs. $\sin 2\beta$ solved with ϕ_d^{Δ} — No tension for ϵ_K

Status 11/12: New Physics in B-Mixing IV

BRAND NEW: Combine all data till now and neglect penguins fit of Δ_d and Δ_s Thanks to CKMfitter!!

- SM seems to be perfect
- Still quite some room for NP

Status 11/12: The dimuon asymmetry

The central value of the di μ asymmetry is larger than theoretically possible!

$$A_{sl} \approx (0.594 \pm 0.022)(5.4 \pm 1.0) \cdot 10^{-3} \frac{\sin(\phi_d^{SM} + \phi_d^{\Delta})}{|\Delta_d|} + (0.406 \pm 0.022)(5.0 \pm 1.1) \cdot 10^{-3} \frac{\sin(\phi_s^{SM} + \phi_s^{\Delta})}{|\Delta_s|} \le (-1.7[1\sigma]; -2.8[3\sigma]) \cdot 10^{-3}$$

$$A_{sl}^{D0} = (-7.8 \pm 2.0) \cdot 10^{-3}$$
A.L. 1205.1444

Possible solutions:

- 1. HQE violated by $\mathcal{O}(200\% 3300\%)$ now excluded!
- 2. Huge new physics in Γ_{12} ? No! Bobeth, Haisch 1109.1826
- 3. Contradiction to $B_s \rightarrow J/\psi\phi$ from LHCb? Be aware of Penguins!
- 4. Stat. fluctuation (2.5 σ) of the D0 result? (Actual value is below -2.8 per mille?) Independent measurements of semi leptonic asymmetries needed!

Recently new measurements for the individual semi leptonic CP asymmetries were made public

a_{sl}^s	=	$-0.24 \pm 0.54 \pm 0.33\%$	LHCB-CONF-2012-022
a_{sl}^s	=	$-1.08\pm0.72\pm0.17\%$	D0 1207.1769
a_{sl}^d	—	$0.68 \pm 0.45 \pm 0.14\%$	D0 1208.5813
a_{sl}^d	=	0.06 + 0.39 - 0.36%	BaBar CKM2012

All numbers are consistent with the SM (no confirmation of large new physics effects) but also consistent with the value of the dimuon asymmetry more data urgently needed.

Status in Nov. 2012: CHARM Revolution I

D-mixing rate is large (HFAG 2012)

 $\frac{\Delta M}{\Gamma} = 0.63^{+0.19}_{-0.20}\% \qquad \frac{\Delta \Gamma}{2\Gamma} = 0.75 \pm 0.12\%$

First single $> 5 = 9.3\sigma$ measurement by LHCb 1211.1230!

Direct CP violation in hadronic Charm decays seen!

 $\Delta A_{CP}^{dir} = -0.656 \pm 0.154\%$

LHCb 1112.0938; CDF 1207.2158; Belle B.R. Ko talk at ICHEP

The crucial question: Can this be described within the SM or is it NP? HQE seems to work well in the B-sector \Rightarrow Try to apply it for Charm Standard argument: the energy release is much too small, but

> $m_{B_s} - 2m_{D_s} \approx 1.43 \,\mathrm{GeV}$ $m_D - 2m_K \approx 0.9 \, \mathrm{GeV}$ $m_D - 2m_\pi \approx 1.6 \text{ GeV}$

Status in Nov. 2012: CHARM Revolution II

From a theory point the most "simple" quantities are the lifetimes

In the Charm-system huge lifetimes ratios appear, e.g.

$$\frac{\tau(D+)}{\tau(D^0)} = 2.536 \pm 0.019$$
 PDG 12

Can theory cope with this?

Be aware:

- Λ/m_c might be too large ($\Lambda \neq \Lambda_{QCD}!$)
- $\alpha_s(m_c)$ might be too large

Status in Nov. 2012: CHARM Revolution III

- Naive expectations (before first data): \(\tau(D+)/\tau(D^0) \approx 1\) Gaillard, Lee, Rosner; Ellis, Gaillard, Nanopulos (1975); Cabibbo, Maiani (1978)
- Naive expectations (after first data hinting for a large difference)
 - only Pauli interference is relevant: $\tau(D+)/\tau(D^0) \approx 10$ Guberina, Nussinov, Peccei, Rückl (1979); Altarelli, Maiani (1982) This is in principle correct, unknown parameters were overestimated
 - ◆ only Weak Annihilation is relevant: \(\tau(D+)/\tau(D^0)\) ≈ 6 7 Bander, Silverman, Soni (1980); Fritzsch, Minkowski (1980); Bernreuther, Nachtmann, Stech (1980)

This is wrong - weak annihilation is a small effect Bigi, Uraltsev (1992)

- Systematic HQE estimates
 - LO-QCD, $1/N_c$: $\tau(D+)/\tau(D^0) \approx 1.5$ Voloshin, Shifman (1981,85)
 - LO-QCD, $1/N_c$: $\tau(D+)/\tau(D^0) \approx 2$ Bigi, Uraltsev (1992-...)
 - up-to-date estimate; NLO QCD Bobrowski, A.L., Rauh; 1208.6438

 $\tau(D+)/\tau(D^0) = 2.8 \pm 1.5$ (hadronic ME) $^{+0.3}_{-0.7}$ (scale) ± 0.2 (parametric)

Looks promising: huge lifetime difference might be explainable by the HQE
UK HEP FORM, The Cosener's House atrix elements of the 4-quark operators urgently needed

Conclusions

- 1. Experimental proof of our theoretical tools there were many fights
 - $\Delta \Gamma_s^{\text{SM}} = \Delta \Gamma_s^{\text{Exp}} \Rightarrow$ Heavy Quark Expansion works very well for *b*-quarks
 - $\Delta \Gamma_s^{SM} = \Delta \Gamma_s^{Exp} \Rightarrow$ Violations of Quark Hadron duality cannot be sizeable
- 2. No huge NP effects in *B*-mixing and rare decays what does this tell us?
 - Still some room for NP effects in *B*-mixing and *B*-decays
 - Some remaining discrepancies
 - V_{ub} softened but not settled
 - Isopsin asymmetry in $B \rightarrow Kll$
 - $B \rightarrow D^{(*)} \tau \nu$ wait for Belle
- 3. There are many new, exciting results for the charm-system Try to understand the SM contribution!

- 4. Life becomes harder: higher precision in experiment and theory needed
 - higher order perturbative corrections
 - non-perturbative effects, e.g. penguin pollution, hadronic matrix elements
 - Investigate baryons and the charm sector