Sneha Malde
University of Oxford



Many open questions in the Standard Model are found in the flavour
sector :

* Why 3 generations?
» What determines the extreme hierarchy of fermion masses?
* What determines the CKM elements?

* What is the origin of CPV?

Progress in flavour physics may help understand open questions in
cosmology - SM CPV insufficient to explain the matter/antimatter
asymmetry.



Kaon mixing & GIM =»prediction of charm

CP violation =» need for a third generation
B mixing =» mass of the top is heavy

Br(B,=»uu) =» already constrained SUSY parameter space

Precise studies of flavour observables are an excellent
way to look for New Physics



*Br (Bs>uu)

CP violation in B mixing
*Observables in B=2>K®) uu
*CP violation in charm

*Precision CKM metrology

Caveat : Selected topics, focus on recent results. Many
other examples exist.



LHCDb - a forward spectrometer
optimised for heavy flavour physics at
the LHC

« forward acceptance (2<n<95)

* acceptance down to low p,

* precise vertexing (VELO)
 hadron identification (RICHes)

LHCb operation proceeds alongside
ATLAS/CMS thanks to luminosity
leveling.

1 fb-1 collected in 2011
Expect ~ 2.2 b1 in 2012
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Both GPD’s can take advantage of the
higher luminosities.

P, trigger thresholds are higher
Central region acceptance :

ATLAS fiducial volume-covered by 2011
B physics triggers o(bb=>J/pX) is 3
times smaller than in LHCb

Concentrate on channels with muons

ATLAS di-muon mass resolution ~
60MeV in barrel, ~ 110 MeV in end cap

CMS di-muon mass resolution ~35 MeV
in barrel and ~77 Mev in the endcap

(c.f LHCb, ~ 25 MeV)
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Forbidden at tree level, and lowest
order CKM suppressed.

Br B, Duu (3.23 = 0.27)x10
Br B, Duu (1.07 + 0.10)x10-10

AJ Buras et al, CERN-PH-TH-2012-210 " ~ tan’p ¥
Very high sensitivity to NP Spring 2011 results :
with expectations of
enhanced branching CDF (3.7 fb1) : <4.3x 108
fractions.
DO (6.1fb"):<5.1x108
Ratio of Branching fractions
of B, and B, excellent test of LHCb(37 pb-): < 5.6 x 108
MFV models
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Topological di-muon trigger
(2 x p,>4 GeV)
Side bands Signal region
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Cut
optimization

Un-blind

Single Event
Sensitivity
PLB 713 (2012) 186

Br(Bs=>uu) measured relative to B*=>»JAhp K*

Multivariate selection

MC used for estimating efficiency and
acceptance differences between signal and
control mode.

CL method used to set limits
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* Upper limit: 2.2 x 108 @ 95% CL
* Expected: 2.3x10% @ 95% CL




B, decay also searched for

Cut based selection optimized
before, unblinding
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Backgrounds in signal channel:

peaking backgrounds

semi-leptonic decays

combinatorial background

Candidates/0.025 GeV

0.8

0.6

0.4

{normalized to the measured B' yield)

CME simulation

B® = K'K 1
B = K'r
. E-':' » W
El B® = x'w
B s W
| E-E — K1
e - =K
B — ='n
WA —pK .
Bl —pu
W pr




(e8]

Candidates / 0.025 GeV

:—JB{Ir -

L]
T

CMS, 5fb™
A

ML

5 52

UL B LR B
Barrel

— B signal window
s B signal window-

TN'y :
B, —> p'yw

/

P— BE signal window
s B’ signal window

Candidates  0.025 GeV

54 56 58

m,, [GeV]

it

B

0.1

II'II|IIII|IIII"|II'1I|'

Br(Byuu) <7.7x10° @ 95% CL
Br(By2uu) <1.8x10° @ 95% CL

B(B_—uu)

JHEP 04 (2012) 033



Strategy similar to earlier analyses

[ 10 E_ —l T T E
BDT on 9 kinematical and topological ~ & | . LHCh |
on 9 kinematical and topologica L o -~
variables : e :
i ) 10! & —— 8 TeV data, .
Train BDT on MC but calibrate on data: : e -
. 2L - .
-signal response: use B=»hh decays ol R
triggered on ‘other B’ 10-3;— m Signal - —w—_
-background response: use sidebands sl - Backgrownd .
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BDT
Invariant mass resolution calibrated from data (dimuon resonances & B=>»hh)

Results looked at in bins of uu invariant mass vs BDT output.

B*=>»JhpK* and B°=>»Kx are normalisation channels both give consistent results.
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4
Observed upper limit < 9.4 x 1019 @ 95% CL



LHCDb

expected

bkg+SM

e

6

B(B! - ) [10”]
/ TeV + 8 TeV data

bkg only p value 5.3x 104 =» 3.50 excess
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Br(Bs2uu)=
+1.4 +0.5 -9
(3.2714 4 (stat) ¥ 5 (syst)) x 10
Consistent with the SM Contribution from the GPDs

Br B, Dup (3.23 = 0.27)x10°9 will remain important



CP violation in B, mixing
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CPV phase o, in B, mixing-decay interference. Very small and precisely
predicted in SM. Box diagram is a tempting entry point for NP.
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To measure @, in B;—J/Wo require:

Large, clean,
sample

~21k events
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Then perform time-dependent angular fit
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Why angular fit? Need to use decay
kinematics to isolate different angular
momentum contributions (CP eigenstates)
since B,.—J/Wop is a P—-VV decay



bs = —0.001 = 0.101 (stat) = 0.027
AT, = 0116 =+ 0.018 (stat) = 0.006

0.4

Two-fold ambiguity resolved
by using B =2 JpKK 0.2

[LHCb-paper-2011-028 &
LHCb-CONF-2012-002] , *
<]

0.0
-0.2
ATLAS also studies this
channel but as analysis is 04
still untagged sensitivity to '
¢ is low arXiv:1208.0572
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Other modes can be used. B, J/pnx is CP-odd eigenstate so
no need of angular analysis. Also true for extended region.

Resonance
fol980)
fo(1370)
non-resonant T
f2(1270), A= 0
f2(1270). |A] = 1

Normalized fraction (%)

69.7 £ 2.

21249,
8.4+ 1.
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Events / 15 MeV
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Events in B,
signal region

other stuff, almost
all CP-too!
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From B = J/hpnn & combining with By=»J/hpd

Preliminary combination [LHCb-CONF-2012-004]

$m e = —0.002 £0.083(stat) £0.027(syst) rad

S

SM: ¢.,=-0.036 +- 0.002 rad [PRL 84 (2011) 03305]

bs = —0.019%5371 0003 rad

LHCb-PAPER-2012-006

Early tantalizing results from the Tevatron did not point the way to NP

Nonetheless must still improve precision to draw understanding from theory.



Flavour-specific CP asymmetry in B decays accesses CPV in
mixing. Extremely small in SM esp. for B, system
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DO measurement is made with
dileptons. Mixture of as, and aq,.

Result lies 3.90 from SM
Generated considerable interest

Difficult to reconcile these results
with others from e.g. B2 J/y¢



4 DD5u ) ~TIDf] _ay [ . ] [y €7 cos(AM, t)e(t)dt
e DDopt)+T[Drp~] 2 f f.t:ﬂ et cosh SL=Le(t)dt
) Time-integrated analysis.
B,/B, productlogl Term takes into account
asymmetry ~ 1% decay time acceptance. ~
0.2%
v
— + v o epspt) Efficiency corrections cover
A _ N(D;p™) = N(Dgp™) X «(Dsp~)  trigger, tracking and muon
e — +,-) x €Dsut)  identification effects.
N(Ds.u’ )+N(D3P§ ) X E(D;',u,_)

D.=> ¢z only channel considered
so far



0.02

g D0 dimuon, |
9.0 fb"! ad = (—0.24 4+ 0.54 + 0.33)%.
o LHCb measurement
consistent with the

-0.02 ‘ SM=a¥ = (1.9 £0.3) x 107°
Y(4S),

-0.04 | HFAG Not the end of the story.

. . Additional D, decays will be
004 002 0 %’ added soon.

LHCb-CONF-2012-022



Physics with EW
penguins at LHCb




Many observables exist in
B> K*uu that could probe the

helicity structure of any NP
Cut out B> JhpK* and BO=2>»y(2S)K*.

Select signal events with BDT

Correct for acceptance effects with event-
by-events correction using MC

Measurements in g2(uu) bins. Decay fully
described by g2 and three angles

My, (MeV / &)
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~900 events




Forward backward asymmetry of lepton system

W Theory W Binned theory
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0-crossing q,° theoretically clean. Extracted from 2D fit to forward &
backward going mass & g2 distributions

With present sensitivity all data consistent with SM LHCb-CONF-2012-008




-A—CP (B> K*utpu ) -T(B-K*%utpu™)

- D(BOSK*Outp=)4+T(BOs K*Oputpu—)

Predicted to be ~10-3 in SM
Very clean due to form factor suppression
Asymmetry up to 15% in certain models

Detector and production asymmetries
controlled through B°=>»JhpK* decay

Aep = —0.072 £ 0.040 (stat) -

LHCB-PAPER-2012-021
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Despite agreement with SM,
there remains a need to
Improve precision

Full angular fit to extract

complete set of observables.

There are many, sensitive to
different classes of New
Physics

ArsTydg? 1078 gev ™)
F 1} ]

[Altmannshoferetal., JHEP 0901 (2009) 019]
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CPV in charm



Direct CPV in charm v small in the SM

In Singly Cabibbo Suppressed decays
interplay between tree and penguin
diagrams gives possibility to observe
effects of NP.

Same qualities that make LHCb a
great B physics detector also hold for
charm.

LHCb has very large samples (order
of mag. larger than B factories)

Controlling systematic uncertainties to
~0.1% level is challenging
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Measure the raw CP asymmetry of D°—f (f=K*K- or Tr*1-) using D**—D?%m.* tag.
Does not equal the ‘physics’ asymmetry due to detector & production effects !

Physics asymmetry Detection asymmetry forslow

Auu (1) = Ace(f) + AS(9) + Ap(r,) + Ap(D™)

Detection asymmetry for Productionasymmetry —
D-decay-zero in this case can be non-zeroin pp collision

Ap(11s) and As(D™) will be the same for both D final states — so cancel in difference

AA{Z‘F = Amw (KK ) - Amw (m) = ACP (KK ) - ACP (M)

Added « perform analysis in kinematic bins to protect vs 29 order effects
insurance: -« average between two polarities of dipole



Numerous cross checks

AAgp (%)

-dividing between magnet polarities

-data taking dependence

-no D meson kinematic dependence

AAcp = [—0.82 % 0.21(stat) * 0.11(syst)]%

A 3.50 effect - constitutes first evidence of CPV in charm
Central value can'’t be excluded in SM though on the large side

Further updates expected + precision studies of other SCS modes
PRL 108 (2012) 111602



Precision CKM
metrology



Progress required to improve knowledge of y

Tree level decays B*=»DK™* great LHCb opportunity.
Unpolluted by NP

Provides a SM benchmark against which other loop ~
driven observables can be compared.

pre-summer direct precision ~ 12°

o &

Indirect precision (loops) ~ 4°

/ o \
Sensitivity to y from b—c and b—u

B- f(D)K" interference

. — Number of D final states considered:
e'(65 -Y) K-

g KK, rtre, K, Krtrte, Ksatr, KsKK
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Current precision of similar size to that from Babar or Belle
More data and more channels currently being analysed

Long term goal, but expect to match current indirect y precision by 2018



*‘Br (Bs2uu) Caveat : Selected topics, focus
on recent results. Many other
examples exist.

CP violation in B; mixing
*EW penguin decays
*CP violation in charm

*Precision CKM metrology

No hints of BSM in the “obvious first-look™ observables
Good progress on longer-term observables
Many measurements still statistically limited

LHC experiments continue to take data. Increase in precision &
expansion of accessible flavour observables

Flavour physics remains of significant importance in the search for BSM






