BSM through flavour physics at the LHC

Sneha Malde University of Oxford

Flavour physics is important

Many open questions in the Standard Model are found in the flavour sector :

- Why 3 generations?
- What determines the extreme hierarchy of fermion masses?
- What determines the CKM elements?
- What is the origin of CPV?

Progress in flavour physics may help understand open questions in cosmology - SM CPV insufficient to explain the matter/antimatter asymmetry.

Proven tool of discovery

- Kaon mixing & GIM → prediction of charm
- CP violation \rightarrow need for a third generation
- B mixing \rightarrow mass of the top is heavy
- $Br(B_s \rightarrow \mu\mu) \rightarrow already constrained SUSY parameter space$

Precise studies of flavour observables are an excellent way to look for New Physics

Possible roads to BSM in the LHC era

•Br (B_s→µµ)

- •CP violation in B_s mixing
- •Observables in $B \rightarrow K^{(*)} \mu \mu$
- •CP violation in charm
- •Precision CKM metrology

Caveat : Selected topics, focus on recent results. Many other examples exist.

Flavour physics at LHC experiments : LHCb

LHCb - a forward spectrometer optimised for heavy flavour physics at the LHC

- forward acceptance (2< η <5)
- $\mbox{ }$ acceptance down to low $\mbox{ } \mbox{ } \mb$
- precise vertexing (VELO)
- hadron identification (RICHes)

LHCb operation proceeds alongside ATLAS/CMS thanks to luminosity leveling.

1 fb⁻¹ collected in 2011

Expect ~ 2.2 fb^{-1} in 2012

Flavour physics at LHC : ATLAS & CMS

Both GPD's can take advantage of the higher luminosities.

P_t trigger thresholds are higher

Central region acceptance :

ATLAS fiducial volume-covered by 2011 B physics triggers $\sigma(bb \rightarrow J/\psi X)$ is 3 times smaller than in LHCb

Concentrate on channels with muons

ATLAS di-muon mass resolution ~ 60MeV in barrel, ~ 110 MeV in end cap

CMS di-muon mass resolution ~35 MeV in barrel and ~77 Mev in the endcap

(c.f LHCb, ~ 25 MeV)

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

 $Br(B_{s(d)} \rightarrow \mu\mu)$

The golden mode : $B_s \rightarrow \mu\mu$

Forbidden at tree level, and lowest order CKM suppressed.

Br B_s $\rightarrow \mu\mu$ (3.23 ± 0.27)x10⁻⁹

Br $B_d \rightarrow \mu\mu$ (1.07 ± 0.10)x10⁻¹⁰

AJ Buras et al, CERN-PH-TH-2012-210

Very high sensitivity to NP with expectations of enhanced branching fractions.

Ratio of Branching fractions of B_s and B_d excellent test of MFV models

Spring 2011 results : CDF (3.7 fb⁻¹) : < 4.3 x 10⁻⁸ D0 (6.1 fb⁻¹) : < 5.1 x 10⁻⁸ LHCb(37 pb⁻¹): < 5.6 x 10⁻⁸

ATLAS analysis: 2.4 fb⁻¹

Br(Bs $\rightarrow \mu\mu$) measured relative to B⁺ $\rightarrow J/\psi$ K⁺

Multivariate selection

MC used for estimating efficiency and acceptance differences between signal and control mode.

CL_s method used to set limits

CMS analysis : 5fb⁻¹

$\rm B_{\rm d}$ decay also searched for

Sneha Malde Coseners House meeting, Nov 2012

Backgrounds in signal channel: peaking backgrounds semi-leptonic decays combinatorial background

CMS analysis : 5fb⁻¹

Br(B_s→µµ) < 7.7 x 10⁻⁹ @ 95% CL Br(B_d→µµ) < 1.8 x 10⁻⁹ @ 95% CL

JHEP 04 (2012) 033

LHCb analysis: 1.0 fb⁻¹ (7TeV) + 1.1 fb⁻¹ (8TeV)

Strategy similar to earlier analyses

BDT on 9 kinematical and topological variables

Train BDT on MC but calibrate on data:

- -signal response: use $B \rightarrow$ hh decays triggered on 'other B'
- -background response: use sidebands

Invariant mass resolution calibrated from data (dimuon resonances & $B \rightarrow hh$)

Results looked at in bins of $\mu\mu$ invariant mass vs BDT output.

 $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow K\pi$ are normalisation channels both give consistent results.

Observed upper limit < 9.4 x 10⁻¹⁰ @ 95% CL

7 TeV + 8 TeV data

bkg only p value 5.3x $10^{-4} \rightarrow 3.5\sigma$ excess

First evidence for $B_s \rightarrow \mu\mu$

 $Br(B_s \rightarrow \mu\mu) =$

(3.2^{+1.4}_{-1.2}(stat) ^{+0.5}_{-0.3} (syst)) x 10⁻⁹

Consistent with the SM

Br B_s →µµ (3.23 ± 0.27)x10⁻⁹

Contribution from the GPDs will remain important

CP violation in B_s mixing

Golden mode: $B_s \rightarrow J/\psi \phi$

CPV phase ϕ_s in B_s mixing-decay interference. Very small and precisely predicted in SM. Box diagram is a tempting entry point for NP.

To measure φ_s in $B_s \rightarrow J/\Psi \varphi$ require:

Then perform time-dependent angular fit

Results from $B_s \rightarrow J/\psi \phi$

 $\phi_s = -0.001 \pm 0.101$ (stat) ± 0.027 (syst) rad $\Delta \Gamma_s = 0.116 \pm 0.018$ (stat) ± 0.006 (syst) ps⁻¹

ϕ_s with $B_s \rightarrow J/\psi \pi \pi 1.0 fb^{-1}$

Other modes can be used. $B_s \rightarrow J/\psi \pi \pi$ is CP-odd eigenstate so no need of angular analysis. Also true for extended region.

φ_s

From $B_s \rightarrow J/\psi \pi \pi$

& combining with $B_s \rightarrow J/\psi \phi$

Preliminary combination [LHCb-CONF-2012-004]:

 $\phi_s^{\text{combined}} = -0.002 \pm 0.083(\text{stat}) \pm 0.027(\text{syst}) \text{ rad}$

SM: φ_s= -0.036 +- 0.002 rad [PRL 84 (2011) 03305]

 $\phi_s = -0.019^{+0.173+0.004}_{-0.174-0.003}$ rad.

LHCb-PAPER-2012-006

Early tantalizing results from the Tevatron did not point the way to NP

Nonetheless must still improve precision to draw understanding from theory.

Semileptonic Asymmetry

Flavour-specific CP asymmetry in B decays accesses CPV in mixing. Extremely small in SM esp. for B_s system

D0 measurement is made with dileptons. Mixture of a^s_{sl} and a^d_{sl}.

Result lies 3.9 σ from SM

Generated considerable interest

Difficult to reconcile these results with others from e.g. $B_s \rightarrow J/\psi \phi$

LHCb as measurement

$$A_{\text{meas}} = \frac{\Gamma[D_s^-\mu^+] - \Gamma[D_s^+\mu^-]}{\Gamma[D_s^-\mu^+] + \Gamma[D_s^+\mu^-]} = \frac{a_{\text{sl}}^s}{2} + \begin{bmatrix} a_{\text{p}} - \frac{a_{\text{sl}}^s}{2} \end{bmatrix} \frac{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cos(\Delta M_s t) \epsilon(t) dt}{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cosh\frac{\Delta \Gamma_s t}{2} \epsilon(t) dt}$$

$$B_s B_s \text{ production} \text{ asymmetry } \sim 1\%$$

$$Time-integrated analysis. Term takes into account decay time acceptance. } \sim 0.2\%$$

$$A_{\text{meas}} = \frac{N(D_s^-\mu^+) - N(D_s^+\mu^-) \times \frac{\epsilon(D_s^-\mu^+)}{\epsilon(D_s^+\mu^-)}}{N(D_s^-\mu^+) + N(D_s^+\mu^-) \times \frac{\epsilon(D_s^-\mu^+)}{\epsilon(D_s^+\mu^-)}}$$

Efficiency corrections cover trigger, tracking and muon identification effects.

 $D_s \rightarrow \phi \pi$ only channel considered so far

LHCb as_{sl} result

$$a_{
m sl}^s = (-0.24 \pm 0.54 \pm 0.33)\%.$$

LHCb measurement consistent with the SM= $a_{
m sl}^s = (1.9 \pm 0.3) imes 10^{-5}$

Not the end of the story. Additional D_s decays will be added soon.

LHCb-CONF-2012-022

Physics with EW penguins at LHCb

Β⁰→Κ*μμ

Many observables exist in
 B⁰→K*µµ that could probe the helicity structure of any NP
 Cut out B⁰→J/ψK* and B⁰→ψ(2S)K*.

Select signal events with BDT

Correct for acceptance effects with eventby-events correction using MC

Measurements in $q^2(\mu\mu)$ bins. Decay fully described by q^2 and three angles

A_{FB} in $B^0 \rightarrow K^* \mu \mu$

Forward backward asymmetry of lepton system

0-crossing q_0^2 theoretically clean. Extracted from 2D fit to forward & backward going mass & q^2 distributions

With present sensitivity all data consistent with SM LHC

LHCb-CONF-2012-008

CP-asymmetry in $B^0 \rightarrow K^* \mu \mu$

$$\mathcal{A_{CP}} = \frac{\Gamma(\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-) - \Gamma(B^0 \to K{}^{*0}\mu^+\mu^-)}{\Gamma(\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-) + \Gamma(B^0 \to K{}^{*0}\mu^+\mu^-)}$$

Predicted to be ~10⁻³ in SM Very clean due to form factor suppression Asymmetry up to 15% in certain models Detector and production asymmetries controlled through B⁰ \rightarrow J/ ψ K* decay

 $\mathcal{A_{CP}} = -0.072 \pm 0.040$ (stat) ± 0.005 (sys)

LHCB-PAPER-2012-021

Further studies in EW penguin decays

Despite agreement with SM, there remains a need to improve precision

Full angular fit to extract complete set of observables.

There are many, sensitive to different classes of New Physics

CPV in charm

Direct CPV in SCS decays

Direct CPV in charm v small in the SM

In Singly Cabibbo Suppressed decays interplay between tree and penguin diagrams gives possibility to observe effects of NP.

Same qualities that make LHCb a great B physics detector also hold for charm.

LHCb has very large samples (order of mag. larger than B factories)

Controlling systematic uncertainties to ~0.1% level is challenging

LHCb D*-D⁰-m_π [0.6 fb⁻¹]

ΔA_{CP} - the essentials

Measure the raw CP asymmetry of $D^0 \rightarrow f$ (f=K⁺K⁻ or $\pi^+\pi^-$) using D^{*+} $\rightarrow D^0\pi_s^+$ tag. Does not equal the 'physics' asymmetry due to detector & production effects !

 $A_D(\pi_s)$ and $A_P(D^{*+})$ will be the same for both D final states – so cancel in difference

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

Added • perform analysis in kinematic bins to protect vs 2nd order effects
• average between two polarities of dipole

ΔA_{CP} - the result

A 3.5σ effect - constitutes first evidence of CPV in charm Central value can't be excluded in SM though on the large side Further updates expected + precision studies of other SCS modes PRL 108 (2012) 111602

Precision CKM metrology

Precision measurement of y

Progress required to improve knowledge of γ

Tree level decays $B^+ \rightarrow DK^+$ great LHCb opportunity. Unpolluted by NP

Provides a SM benchmark against which other loop driven observables can be compared.

pre-summer direct precision ~ 12°

Indirect precision (loops) ~ 4°

Sensitivity to γ from b→c and b→u interference

Number of D final states considered:

ΚΚ, ππ, Κπ, Κπππ, Κsππ, KsKK

LHCb y combination

Current precision of similar size to that from Babar or Belle More data and more channels currently being analysed Long term goal, but expect to match current indirect γ precision by 2018

Possible roads to BSM in the LHC era

- •Br (B_s→μμ)
- •CP violation in B_s mixing
- •EW penguin decays
- •CP violation in charm
- Precision CKM metrology

Caveat : Selected topics, focus on recent results. Many other examples exist.

No hints of BSM in the "obvious first-look" observables

Good progress on longer-term observables

Many measurements still statistically limited

LHC experiments continue to take data. Increase in precision & expansion of accessible flavour observables

Flavour physics remains of significant importance in the search for BSM

