Supersymmetry Searches at ATLAS and CMS UK HEP Forum 2012 Friday 23rd November, 2012

Sky French

Pembroke College, University of Cambridge

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 1 / 40

- Very many Searches for Supersymmetry completed by both the ATLAS and CMS collaborations in 2011 and 2012¹
- It is a privilege to attempt to summarise these searches here...
- I will do my best to summarise it all, where possible showing the latest ones (i.e. SUSY and HCP, 7 TeV and 8 TeV) from both experiments
- See:

```
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
SupersymmetryPublicResults and
https:
//twiki_cern_ch/twiki/bin/view/CMSPublic/PhysicsPe
```

//twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
for a complete list and all the details!

¹And probably more to come before the year is over! < 🗆 > < 🗃 > < 🖹 > 🛛 🛓 🔊 ໑໙...

Sky French (Cambridge)

UK HEP Forum 2012

How many searches?

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 3 / 40

Sac

イロト イポト イヨト イヨト 三日

ATLAS SUSY Searches (2011 - 2012)

See: https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/SupersymmetryPublicResults

- $\circ~$ 15 papers and 8 CONF notes with $\int {\cal L} \mbox{ dt} = 1 \mbox{ } 2 \mbox{ fb}^{-1}$
- $\circ~$ 20+ papers and 7 CONF notes with $\int {\cal L}~dt = 4.7~fb^{-1}$

 $+ 2010 \ 35 \ pb^{-1}$ results

UK HEP Forum 2012

CMS SUSY Searches (2011-2012)

See: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsSUS

- 1 paper and 13 notes with $\int \mathcal{L} dt =$ 1 - 2 fb⁻¹
- $\circ~$ 12 papers and 12 notes with $\int {\cal L} \mbox{ dt} \approx 5 \mbox{ fb}^{-1}$
- $+ 2010 \ 35 \ pb^{-1}$ results

An Introduction

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 6 / 40

э

Sac

イロト イロト イヨト イヨト

Supersymmetry (1)

- Weak scale SUSY is one of the most extensively studied extensions to the Standard Model
- Postulates superpartners for all the SM particles:
 SM fermions ⇔ SUSY bosons
 SM bosons ⇔ SUSY fermions

Standard Model: н d S b g quarks Ζ Ve Vu Vτ leptons bosons w e

Supersymmetry:

UK HEP Forum 2012

3

Sac

・ 同 ト ・ ヨ ト ・ ヨ ト

Supersymmetry (2)

Supersymmetry is not just one model...

If *R*-parity is conserved

 $R_{\rho} = (-1)^{(3B-3L+2s)}$, SM (SUSY) particles have $R_{\rho} = +1$ (-1)

- The lightest supersymmetry particle (LSP) is stable, it does not decay
- SUSY particles are produced in pairs

(but of course this need not be the case)

SUSY must be a broken symmetry e.g. through a hidden sector with a messenger field

- Supergravity break SUSY via gravity
- GMSB break SUSY via new gauge interactions
- AMSB SUSY is broken by anomalies

イロト 不得 トイヨト イヨト 二日

Supersymmetry (3)

- We've perhaps been expecting SUSY for quite some time...
- But we've seen no sign of her... is the theory wrong? is she hiding?
- ... wide range of signatures, and many places to hide...

• Key Motivations?

- Dark matter WIMP fits with SUSY
- Light Higgs new physics is needed to stabilise mass

$$\begin{split} \Delta m_{H}^{2} &= \frac{\left|\lambda_{f}\right|^{2}}{16\pi^{2}} \left[-2\Lambda_{UV}^{2} + 6m_{f}^{2}\ln(\Lambda_{UV}/m_{f}) + ...\right]\\ \text{UV cut-off gives finite mass}\\ \Delta m_{H}^{2} &= \frac{\lambda_{S}}{16\pi^{2}} \left[\Lambda_{UV}^{2} - 2m_{s}^{2}\ln(\Lambda_{UV}/m_{s}) + ...\right] \end{split}$$

SUSY provides correct coupling and number of states for cancellations

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 9 / 40

・ 同 ト ・ ヨ ト ・ ヨ ト

Where to begin?

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 10 / 40

DQC

イロト イポト イヨト イヨト 三日

Plot by T. Khoo

"Strong Production"

- Search for the most obvious thing (?)
- The LHC is a "QCD machine"...
- $\circ \ ... \ 1^{st}$ and 2^{nd} generation squarks ($\tilde{u}, \ \tilde{d}, \ \tilde{s}, \ \tilde{c})$ and gluinos will be produced dominantly
- (unless the 3rd generation and electroweak sparticles are much lighter)
- If *R*-parity is conserved: neutral light LSP, sparticles produced in pairs

• Look for the strong production and decay of squarks and gluinos $\tilde{q}\tilde{q},\,\tilde{q}\tilde{g},\,\tilde{g}\tilde{g}$

- $\circ \tilde{q}$ and \tilde{g} cascade through lighter sparticles to reach the LSP
- \circ $E_{\rm T}^{\rm miss}$ (from escaping LSPs) signature, expect jets
- Any sleptons and gauginos produced in the cascades can give leptons, further-jets, *b*-jets etc

・ 同 ト ・ ヨ ト ・ ヨ ト

ATLAS 0-Lepton Search 8 TeV 5.8 fb⁻¹ ATLAS-CONF-2012-109

- $\circ \;\; {
 m Target} \; { ilde g} o q { ilde q} { ilde \chi}_1^{
 m 0} \; {
 m and} \; { ilde q} o q { ilde \chi}_1^{
 m 0} \; {
 m decays}$
- Following *q̃q*, *q̃g*, *g̃g* production
- $\label{eq:constraint} \begin{array}{l} \circ & \rightarrow \text{ expect different jet} \\ & \text{multiplicity depending} \\ & \text{on the process} \end{array}$
- Search in events with 2-6 jets $+E_T^{miss}$ at high m_{eff} $(m_{eff}: \text{ scalar sum of jet}$ p_T and E_T^{miss})

6-jet selection:

squarks and gluinos with direct decays to the SM and LSP

mSUGRA/CMSSM framework

CMS 0-Lepton Search

7 TeV 4.98 fb⁻¹ CMS-SUS-12-011, arXiv:1207.1898

 $H_{\rm T}$ (left) and missing $H_{\rm T}$ (right)

Aside on the CMSSM?

- Often used as a benchmark
- Pick $\tan \beta = 10, A_0 = 0, \mu > 0, \text{ scan } m_0, m_{1/2}$
- Only weak dependence on $\tan\beta$ up to \sim 40

Sky French (Cambridge)

UK HEP Forum 2012

ATLAS 1 Lepton ≥ 4 jets 8 TeV 5.8 fb⁻¹ ATLAS-CONF-2012-104

- Strongly interactive SUSY particles can decay into jets, the LSP **and leptons** e.g. $\tilde{q} \rightarrow q \tilde{\chi}_1^{\pm} \rightarrow$ $q W^{\pm} \tilde{\chi}_1^0 \rightarrow q e^{\pm} \nu_e \tilde{\chi}_1^0$
- Consider 4 jet final states, and one isolated electron or muon
- Veto on 2nd lepton to remove overlap with other searches
- \circ Look at high $E_{\rm T}^{\rm miss}$, $m_{
 m eff}$, $m_{
 m T}$ and $E_{\rm T}^{
 m miss}/m_{
 m eff} > 0.2$

Muon channel:

mSUGRA/CMSSM framework

see also: CMS-SUS-11-011 OS-dilepton, ATLAS-CONF-2012-105 SS-dilepton searches

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 14 / 40

CMS and ATLAS searches have excluded light squarks and gluinos up to 1 TeV

 $m_{ ilde q}\gtrsim$ 1.4 TeV, $m_{ ilde g}\gtrsim$ 900 GeV OR $m_{ ilde q}-m_{ ilde g}\gtrsim$ 1.4 TeV

... but they are not as sensitive to the 3rd generation.

 Sky French (Cambridge)
 UK HEP Forum 2012
 Friday 23rd November, 2012
 15 / 40

CMS 0-Lepton α_T search

8 TeV 3.9 fb⁻¹ CMS PAS SUS-12-016 Updated to 11.7 fb⁻¹ at HCP (CMS PAS SUS-12-028)

- $\circ~$ Again design for sensitivity to $E_{\rm T}^{\rm miss}$ signatures in events with \geq 2 jets
- But categorise by no. *b*-jets (0, 1, 2, \geq 3) \rightarrow (1) improves sensitivity to third-generation squark

signatures

 \rightarrow (2) whilst retaining sensitivity to massive coloured particle production processes ($\tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$)

- $\circ~\alpha_{\rm T}$ is used to remove QCD
- Search in bins of *H*_T and no. *b*-jets

 $(H_{\rm T}:$ scalar sum of jet $p_{\rm T})$

Friday 23rd November, 2012 16 / 40

< ロト < 同ト < ヨト < ヨト

Sky French (Cambridge)

UK HEP Forum 2012

Natural SUSY?

Returning to:

 $\Delta m_{H}^{2} = \frac{|\lambda_{f}|^{2}}{16\pi^{2}} \left[-2\Lambda_{UV}^{2} + 6m_{f}^{2} \ln(\Lambda_{UV}/m_{f}) + ... \right]$

Dominant loop is from t: only the 3rd generation squarks need to be light

- 3rd generation cross-section smaller existing limits don't rule this out.
- Generally speaking Jets + E^{miss}_T searches probe ũ, d, č, š
 but not ĩ, b

Sky French (Cambridge)

UK HEP Forum 2012

・ 同 ト ・ ヨ ト ・ ヨ ト

Natural SUSY?

• 3rd Generation

 3rd generation squarks can be relatively light (150-250 GeV), produced in pairs with high-cross section, or appear in gluino cascade decay (gluinos can't be too heavy).

Direct Production: expect bs, Ws, ts and E^{miss}

2 Gluino mediated: all of the above - +jets

Gauginos 0

- Should be light
- Signature expected: leptons, E_{T}^{miss} , no jets

500

・ 同 ト ・ ヨ ト ・ ヨ ト

ATLAS Direct Stop Searches

• Final results (at $\sqrt{s} = 7$ TeV, 5 fb⁻¹) summarised in the $\tilde{\chi}_1^0 - \tilde{t}_1$ plane below

 m(t̃) > m(t): hadronic or leptonic top decays with extra E^{miss}_T (t̃₁ → t X̃₁⁰ → Wb X̃₁⁰)
 m(t̃) < m(t): top-like decay via chargino, lower p_T leptons

• m(t) < m(t): top-like decay via chargino, lower $p_{\rm T}$ leptons $(\tilde{t} \to b \tilde{\chi}^{\pm}_{\pm} \to b W^{(*)} \tilde{\chi}^{0}_{\pm})$

Sky French (Cambridge)

< ロト < 同ト < ヨト < ヨト

ATLAS Very Light Stop Search

7 TeV 4.7 fb⁻¹ arXiv:1208.4305

- Search for pair produced light scalar top quarks
- 2 lepton final state
- High *E*_T^{miss}, at least one jet, low lepton *p*_T

Signal concentrated at low lepton $p_{\rm T}$

Assume $\tilde{t} \to b \tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{\pm}$ decays via a virtual *W* boson Assume $m(\tilde{\chi}_1^{\pm}) = 106$ GeV

(corresponds to dark green patch on previous slide)

CMS Direct Stop Search

8 TeV 9.7 fb⁻¹ CMS PAS SUS-12-023 New at HCP

- $\begin{array}{l} \circ \quad \mbox{Sensitivity to} \\ \tilde{t} \to t \tilde{\chi}_1^0, \\ \tilde{t} \to b \tilde{\chi}_1^{\pm} \to b W \tilde{\chi}_1^{\pm} \end{array}$
- High *p*_T jets (incl. 2 b jets), *E*^{miss}_T signature
- Search at high $m_{\rm T}$

Stop to top

Sac

• • • • • • • • • • • • • •

CMS SS-dilepton and > 2 b-jets search

8 TeV 3.95 fb⁻¹ CMS PAS SUS-12-017 Updated to 10.5 fb⁻¹ at HCP (CMS PAS SUS-12-029)

Search in various bins of the H_T / E_T^{miss} plane (13 events in total)

Backgrounds:

- fake leptons (from HF decays, mis-identified hadrons, muons from meson decay in flight, electrons from conversions)
- charge "flip", rare SM processes with 2 SS leptons and b-jets (e.g. $pp \rightarrow t\bar{t}W$

Analysis is sensitive to both gluino mediated, and direct production, of 3rd generation squarks.

Sky French (Cambridge)

< 17 ▶

ATLAS 0 lepton \geq 3 b-jets Search 8 TeV 13.0 fb⁻¹ ATLAS-CONF-2012-145 New at HCP

4 or 6 jets, 3+
 b-tagged

- $\circ \ \ \, E_{\rm T}^{\rm miss} > \\ 200 \ \, {\rm GeV} \\$
- Define multiple signal regions using different *m*_{eff} cuts

Backgrounds:

- Dominated by: tt+jets
- Others: $t\bar{t} + b/b\bar{b}$, *W*, *Z* and diboson

UK HEP Forum 2012

CMS search for τ -leptons in all hadronic events 7 TeV 4.98 fb⁻¹ CMS PAS SUS-12-004

Sar

High luminosity brings sensitivity to electroweak production...

- If coloured SUSY particles are very massive while non-coloured SUSY particles are light, weak gauginos and sleptons may dominate SUSY production at the LHC.
- Limits on q̃ and g̃ masses pushed very high
- $\circ~$ Naturalness favours gaugino masses \sim 100 GeV

Search strategy? e.g.

Targeted Process	Signal Region
Two-lepton Final States	
$\tilde{\ell}^{\pm}\tilde{\ell}^{\mp} \rightarrow (\ell^{\mp}\tilde{\chi}_1^0) + (\ell^{\mp}\tilde{\chi}_1^0)$	SR-m _{T2}
$\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp} \to (\ell^{\mp}\nu\tilde{\chi}_1^0) + (\ell^{\mp}\nu\tilde{\chi}_1^0)$	SR-m _{T2} , SR-OSjveto
$\tilde{\chi}_2^0 \tilde{\chi}_i \to (\ell^{\mp} \ell^{\mp} \tilde{\chi}_1^0) + (q \bar{q}' \tilde{\chi}_1^0)$	SR-2jets
Three-lepton Final States	
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \rightarrow (\ell^{\mp}\ell^{\mp}\tilde{\chi}_{1}^{0}) + (\ell^{\mp}\nu\tilde{\chi}_{1}^{0})$	SR-OSjveto, SR-SSjveto

Table: Decay modes targeted by each SR in arXiv:1208.2884, $\tilde{\chi}_i$ denotes either a chargino or a neutralino. In decays producing three real leptons, one must be mis-reconstructed or fall outside the acceptance of the detector.

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 25 / 40

・ロト ・ 同ト ・ ヨト ・ ヨト

ATLAS direct slepton and gaugino production 7 TeV 4.7 fb⁻¹ arXiv:1208.2884

Search for $\tilde{l}^{\pm}\tilde{l}^{\mp}$ pair-production and $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$, $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ 2 lepton final state

See: 2 3 leptons at ATLAS 7 TeV (arXiv:1208.3144), 3 leptons at ATLAS 8 TeV (ATLAS-CONF-2012-154)

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 26 / 40

Sac

< ロト < 同ト < ヨト < ヨト

CMS direct slepton and gaugino production 8 TeV 9.2 fb⁻¹ CMS SUS-12-028 New at HCP

RPV, Long-lived Particles?

If R-parity isn't conserved - ...

- \circ lower $E_{\rm T}^{\rm miss}$
- SUSY particles decaying to SM particles
- possibilities for different final states

過きょうきょうき

ATLAS 4 Lepton RPV Search

8 TeV 13.0 fb⁻¹ ATLAS-CONF-2012-153 New at HCP

Search for RPV 0 SUSY with four or more leptons (electrons or muons) Non-zero λ_{121} coupling

- Irreducible (four 0 real, isolated leptons) and reducible (at least one fake) background components
- \circ ZZ. WZ and $t\bar{t}$ dominate in the SR

interpretation Pair produce wino-like charginos ($\tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$) $e^{+}(\mu^{+})$ \tilde{e}_R^{+*} $\bar{\nu}_{\mu}(\bar{\nu}_{e})$ λ_{121}

< ロ ト < 同 ト < 三 ト < 三 ト

ATLAS Disappearing Track

7 TeV 4.7 fb⁻¹ arXiv:1210.2852

No. outer hits in TRT for data and signal:

 Direct chargino pair production in anomaly mediated SUSY breaking Chargino lifetime long enough to be detected in the tracking detectors

- search for tracks with few associated hits in the outer region of the tracker
- analyse the *p*_T spectrum of such tracks

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 30 / 40

Others?

- If SUSY particle masses are close together, reduce the *p*_T in the final states
- \circ Multiple jets, but little $E_{\rm T}^{\rm miss}$
- Compressed spectra, stealth SUSY ...

伺下 イヨト イヨト

CMS Stealth SUSY 7 TeV 4.98 fb⁻¹ arXiv:1210.2052

- Low *E*_T^{miss}, many energetic final-state objects
- Light "hidden sector" particles can mediate decays to many low p_T objects
- Very rich phenomenology

Search in events with $\gamma\gamma+\leq$ 4 jets, and large total energy (no requirement on $E_{\rm T}^{\rm miss}$) Events / (50 GeV) CMS 50 4.96 fb⁻¹, is = 7 TeV Data. >4-jets 40 Expected Backgroun Syst. Uncertainty M.=900GeV 30 S_ Sideband 20

10

600 800 1000 1200 1400

S₊ (GeV)

э

Sac

イロト イポト イヨト イヨト

General Gauge Mediation

- The Gravitino \tilde{G} is the LSP and very light
- The nature of the NLSP determines the main signature of the decay

1 Stau
$$\rightarrow \tau + E_{T}^{miss}$$

2 Bino $\rightarrow \gamma + E_{T}^{miss}$
3 Wino $\rightarrow W + E_{T}^{miss}$
4 Higgsino $\rightarrow H/Z + E_{T}^{miss}$

• Gives lots of interesting things to look for: τ s, γ s....

くぼう くほう くほう

CMS GGM $\gamma(\gamma) + \text{jet}(s) + E_{\text{T}}^{\text{miss}}$ 8 TeV 4.04 fb⁻¹ CMS PAS SUS-12-018

- Addresses a General Gauge Mediation scenario
- $\circ \quad \begin{array}{l} \tilde{G} \text{ LSP, } \tilde{\chi}_1^0 \\ \text{NLSP } (\tilde{\chi}_1^{\pm} \\ \text{co-NLSP} \\ \text{possible}) \end{array}$
- $\begin{array}{l} \circ \ \ \, \text{Looking for} \\ \gamma\gamma+\text{jet}+E_{\rm T}^{\rm miss} \\ \text{or} \\ \gamma+\text{2jet}+E_{\rm T}^{\rm miss} \end{array} \end{array}$

Backgrounds:

- $\circ~$ Mis-measurement of $E_{\rm T}^{\rm miss}$ in QCD processes, multijets with jets mimicking $\gamma~$
- True E_T^{miss} events with real or fake γ, and a W boson decaying to an e mis-identified as a γ.

NLSP bino or wino-like $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ $\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$ (with a wino-like NLSP, signal is suppressed by chargino decays without photons)

< ロト < 同ト < ヨト < ヨト

ATLAS Z+MET 8 TeV 5.8 fb⁻¹ ATLAS-CONF-2012-152 New at HCP

- General Gauge Mediation scenario
- G̃ LSP, NLSP is a Higgsino-like neutralino
- $\circ \ ilde{\chi}^0_1 o h ilde{G} ext{ or } ilde{\chi}^0_1 o Z ilde{G}$
- Search for events with at least one Z decay into OS ℓ pairs and $E_{\rm T}^{\rm miss}$

Sac

A Summary?

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 36 / 40

DQC

イロト イポト イヨト イヨト 三日

Summary Plots: ATLAS

Mass reach of ATLAS SUSY searches Updated for HCP

Summary of ATLAS dedicated searches for stop production

イロト イポト イヨト イヨト

Sky French (Cambridge)

UK HEP Forum 2012

Friday 23rd November, 2012 37 / 40

э

Summary Plots: ATLAS New at HCP

Sky French (Cambridge)

Sac

Summary Plots: CMS

Observed limits from several 2011 CMS SUSY searches plotted in the CMSSM (m0,m1/2) plane

Range of excluded mass scale in Simplified Model Spectra from several 2011 CMS SUSY searches: best analysis result per topology see CMS SUS-11-016 for more detail

Sac

・ 同 ト ・ ヨ ト ・ ヨ ト

- ATLAS and CMS searches have left little room for SUSY in the reach of the existing data
- ATLAS and CMS have set bounds at the TeV-scale on gluino and squark production
- Reaching sensitivity to sub-femtobarn cross-sections
- 2011 and 2012 searches constrain squark and gluino masses uniformly in multiple model frameworks
- Plausible "natural" scenarios are still not ruled out: stop and/or RPV scenarios have few(er) constraints
- But allowed phase space is certainly getting squeezed
- Higgs-like boson discovered, but at high end of (MSSM) preference
- Need heavy squarks, large stop mixing or beyond MSSM
- This talk has illustrated a variety of results covering all kinds of signatures
- Still no sign of SUSY... (but the full 2012 dataset is still to be analysed!)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ