Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

Marek Schönherr

Institute for Particle Physics Phenomenology

26/09/2012

LHCphenOnet

arXiv:1111.1220, arXiv:1208.2815

1C not

IPPP Durham

The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044 COMIX JHEP12(2008)039 CS subtraction EPJC53(2008)501
- A Parton Shower (PS) generator CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event MEPs (CKKW), Mc@NLO, MENLOPS, MEPS@NLO

 \rightarrow full analytic control mandatory for consistency/accuracy

The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044 COMIX JHEP12(2008)039 CS subtraction EPJC53(2008)501
- A Parton Shower (PS) generator CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event MEPS (CKKW), Mc@NLO, MENLOPS, MEPS@NLO

 \rightarrow full analytic control mandatory for consistency/accuracy

Mc@NLO

Frixione, Webber JHEP06(2002)029

$$\langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \left[\Delta^{(\mathsf{A})}(t_0,\mu_Q^2) \,O(\Phi_B) + \sum_i \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \,\frac{\mathrm{D}_i^{(\mathsf{A})}(\Phi_B,\Phi_1)}{\mathrm{B}(\Phi_B)} \,\Delta^{(\mathsf{A})}(t,\mu_Q^2) \,O(\Phi_R) \right] \\ + \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \,O(\Phi_R)$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

- NLO weighted Born configuration $\bar{B}^{(A)} = B + \tilde{V} + I + \int d\Phi_1 [D^{(A)} D^{(S)}]$
- use $D_i^{(A)}$ as resummation kernels $\Delta^{(A)}(t,t') = \exp \left[\int_t^{\kappa} d\Phi_1 D^{(A)} / B\right]$
- resummation phase space limited by $\mu_O^2 = t_{\sf max}$
 - \rightarrow starting scale of parton shower evolution
 - ightarrow should be of the order of the hard resummation scale

-

 \Rightarrow first implementation to allow to study μ_O uncertainty

Dijet - NLO

Dijet - MC@NLO

Mc@NLO

Frixione, Webber JHEP06(2002)029

$$\langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \left[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) + \sum_i \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}_i^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \right]$$
$$+ \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R)$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

- NLO weighted Born configuration $\bar{B}^{(A)} = B + \tilde{V} + I + \int d\Phi_1 [D^{(A)} D^{(S)}]$ • use $D_i^{(A)}$ as resummation kernels $\Delta^{(A)}(t, t') = \exp \left[\int_t^{t'} d\Phi_1 D^{(A)} / B\right]$
- Use D_i as resummation vertices $\Delta^{(i)}(t,t) = \exp\left[\int_t^t d\Psi_1 D\right]$

-

- resummation phase space limited by $\mu_Q^2 = t_{\max}$
 - \rightarrow starting scale of parton shower evolution
 - \rightarrow should be of the order of the hard resummation scale
 - \Rightarrow first implementation to allow to study μ_Q uncertainty

Marek Schönherr

IPPP Durham

Mc@NLO

Frixione, Webber JHEP06(2002)029

$$\langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \left[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \right. \\ \left. + \sum_i \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}_i^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \right] \\ \left. + \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R)$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

every term is well defined and NLO and NLL accuracy maintained if:

- $D^{(A)} = \sum_{i} D_{i}^{(A)}$ is full colour correct in soft limit
- $D^{(A)} = \sum_i D_i^{(A)}$ contains all spin correlations in collinear limit
- $D_i^{(A)}$ and $D_i^{(S)}$ have identical parton maps

\Rightarrow conventional parton showers need to be improved for that e.g. choose $D_i^{(A)} = D_i^{(S)}$ up to phase space constraints

Dijet - NLO

Γ.

Dijet - MC@NLO

Mc@NLO

Frixione, Webber JHEP06(2002)029

$$\langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} = \int \mathrm{d}\Phi_B \, \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \left[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \right. \\ \left. + \sum_i \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}_i^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \right] \\ \left. + \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R)$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

POWHEG and MC@NLO differ in choice of $\mathrm{D}^{(\mathsf{A})}_i$ and μ_Q

PowHEG $\mu_Q^2 = \frac{1}{4} S_{had}$, $D_i^{(A)} = \rho_i R$ ρ_i suitable projector on single soft-collinear singular region \rightarrow exponentiates process-specific non-logarithmic terms **MC@NLO** $\mu_Q^2 = t_{max}$, $D_i^{(A)} = B \cdot K_i$ modify to $D_i^{(A)} = f \cdot B \cdot K_i$ for non-trivial colour structures \rightarrow exponentiates same as parton shower

Marek Schönherr

IPPP Durham

Dijet - NLO

- poor description in phase space regions with strongly hierarchical scales
- poor perturbative jet-modeling (at most two constituents)
- no hadronisation, MPI effects
- very pronounced in inclusive & dijet production
- jet- p_{\perp} turn negative in forward region unless y-dependent scale is used (e.g. $H_T^{(y)}$)

cuts:
$$p_{\perp}^{j_1} > 80~{
m GeV},~p_{\perp}^{j_{\geq 2}} > 60~{
m GeV}$$

no. jets	ATLAS	LO	ME+PS	NLO	NP factor	NLO+NP
≥ 2	$620 \pm 1.3^{+110}_{-66} \pm 24$	$958(1)^{+316}_{-221}$	559(5)	$1193(3)^{+130}_{-135}$	0.95(0.02)	$1130(19)^{+124}_{-129}$
≥ 3	$43 \pm 0.13^{+12}_{-6.2} \pm 1.7$	$93.4(0.1)^{+50.4}_{-30.3}$	39.7(0.9)	$54.5(0.5)^{+2.2}_{-19.9}$	0.92(0.04)	$50.2(2.1)^{+2.0}_{-18.3}$
≥ 4	$4.3 \pm 0.04^{+1.4}_{-0.79} \pm 0.24$	$9.98(0.01)^{+7.40}_{-3.95}$	3.97(0.08)	$5.54(0.12)^{+0.08}_{-2.44}$	0.92(0.05)	$5.11(0.29)^{+0.08}_{-2.32}$

Bern et.al. arXiv:1112.3940

Marek Schönherr

MC@NLO

Dijet - NLO

- poor description in phase space regions with strongly hierarchical scales
- poor perturbative jet-modeling (at most two constituents)
- no hadronisation, MPI effects
- very pronounced in inclusive & dijet production
- jet-p⊥ turn negative in forward region unless y-dependent scale is used (e.g. H^(y)_T)

cuts:
$$p_{\perp}^{j_1} > 80$$
 GeV, $p_{\perp}^{j_{\geq 2}} > 60$ GeV

no. jets	ATLAS	LO	ME+PS	NLO	NP factor	NLO+NP
≥ 2	$620 \pm 1.3^{+110}_{-66} \pm 24$	$958(1)^{+316}_{-221}$	559(5)	$1193(3)^{+130}_{-135}$	0.95(0.02)	$1130(19)^{+124}_{-129}$
≥ 3	$43 \pm 0.13^{+12}_{-6.2} \pm 1.7$	$93.4(0.1)^{+50.4}_{-30.3}$	39.7(0.9)	$54.5(0.5)^{+2.2}_{-19.9}$	0.92(0.04)	$50.2(2.1)^{+2.0}_{-18.3}$
≥ 4	$4.3 \pm 0.04^{+1.4}_{-0.79} \pm 0.24$	$9.98(0.01)^{+7.40}_{-3.95}$	3.97(0.08)	$5.54(0.12)^{+0.08}_{-2.44}$	0.92(0.05)	$5.11(0.29)^{+0.08}_{-2.32}$

Bern et.al. arXiv:1112.3940

Marek Schönherr

Dijet - NLO

- poor description in phase space regions with strongly hierarchical scales
- poor perturbative jet-modeling (at most two constituents)
- no hadronisation, MPI effects
- very pronounced in inclusive & dijet production
- jet- p_{\perp} turn negative in forward region unless y-dependent scale is used (e.g. $H_T^{(y)}$)

cuts: $p_{\perp}^{j_1} > 80~{\rm GeV},~p_{\perp}^{j \geq 2} > 60~{\rm GeV}$

no. jets	ATLAS	LO	ME+PS	NLO	NP factor	NLO+NP
≥ 2	$620 \pm 1.3^{+110}_{-66} \pm 24$	$958(1)^{+316}_{-221}$	559(5)	$1193(3)^{+130}_{-135}$	0.95(0.02)	$1130(19)^{+124}_{-129}$
≥ 3	$43 \pm 0.13^{+12}_{-6.2} \pm 1.7$	$93.4(0.1)^{+50.4}_{-30.3}$	39.7(0.9)	$54.5(0.5)^{+2.2}_{-19.9}$	0.92(0.04)	$50.2(2.1)^{+2.0}_{-18.3}$
≥ 4	$4.3 \pm 0.04^{+1.4}_{-0.79} \pm 0.24$	$9.98(0.01)^{+7.40}_{-3.95}$	3.97(0.08)	$5.54(0.12)^{+0.08}_{-2.44}$	0.92(0.05)	$5.11(0.29)^{+0.08}_{-2.32}$

Bern et.al. arXiv:1112.3940

Marek Schönherr

Dijet - NLO

- poor description in phase space regions with strongly hierarchical scales
- poor perturbative jet-modeling (at most two constituents)
- no hadronisation, MPI effects
- very pronounced in inclusive & dijet production
- jet- p_{\perp} turn negative in forward region unless y-dependent scale is used (e.g. $H_T^{(y)}$)

cuts:
$$p_{\perp}^{j_1} > 80~{
m GeV}$$
, $p_{\perp}^{j\geq 2} > 60~{
m GeV}$

no. jets	ATLAS	LO	ME+PS	NLO	NP factor	NLO+NP
≥ 2	$620 \pm 1.3^{+110}_{-66} \pm 24$	$958(1)^{+316}_{-221}$	559(5)	$1193(3)^{+130}_{-135}$	0.95(0.02)	$1130(19)^{+124}_{-129}$
≥ 3	$43 \pm 0.13^{+12}_{-6.2} \pm 1.7$	$93.4(0.1)^{+50.4}_{-30.3}$	39.7(0.9)	$54.5(0.5)^{+2.2}_{-19.9}$	0.92(0.04)	$50.2(2.1)^{+2.0}_{-18.3}$
≥ 4	$4.3 \pm 0.04^{+1.4}_{-0.79} \pm 0.24$	$9.98(0.01)^{+7.40}_{-3.95}$	3.97(0.08)	$5.54(0.12)^{+0.08}_{-2.44}$	0.92(0.05)	$5.11(0.29)^{+0.08}_{-2.32}$

Bern et.al. arXiv:1112.3940

Marek Schönherr

Describe wealth of experimental data with a single sample (LHC@7TeV) MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_\perp$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation fully hadronised including MPI
- virtual MEs from BLACKHAT Giele, Glover, Kosower Nucl.Phys.B403(1993)633-670

Bern et.al. arXiv:1112.3940

• $p_{\perp}^{j_1}>20~{\rm GeV},~p_{\perp}^{j_2}>10~{\rm GeV}$

Uncertainty estimates:

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{R/F}^{\text{def}}$
- $\mu_Q \in [\frac{1}{\sqrt{2}}, \sqrt{2}]\, \mu_Q^{\mathsf{def}}$
- MPI activity in tr. region $\pm~10\%$

Describe wealth of experimental data with a single sample (LHC@7TeV) MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_{\perp}$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation fully hadronised including MPI
- virtual MFs from BLACKHAT Giele, Glover, Kosower Nucl.Phys.B403(1993)633-670

Bern et.al. arXiv:1112.3940

• $p_{\perp}^{j_1} > 20 \text{ GeV}, p_{\perp}^{j_2} > 10 \text{ GeV}$

Uncertainty estimates:

Marek Schönher

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{R/F}^{\mathsf{def}}$
- $\mu_Q \in \left[\frac{1}{\sqrt{2}}, \sqrt{2}\right] \mu_Q^{\mathsf{def}}$
- MPI activity in tr. region $\pm 10\%$

Höche, MS arXiv:1208.2815

Marek Schönherr

IPPP Durham

Marek Schönherr

IPPP Durham

Höche, MS arXiv:1208.2815

3-jet-over-2-jet ratio

- determined from incl. sample
 2-jet rate at NLO+NLL
 3-jet rate at LO+LL
- common scale choices \rightarrow varied simultaneously
- at large H_T large MPI uncertainties
 - \rightarrow better MPI physics needed (soft QCD)
- similar description of related ATLAS observables

Höche, MS arXiv:1208.2815

Marek Schönherr

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

9

Marek Schönherr

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

10

Marek Schönher

Case study: Inclusive jet & dijet production

Try different scale

- $\mu_{R/F} = \frac{1}{4} H_T^{(y)}$ with $H_T^{(y)} = \sum_{i \in jets} p_{\perp,i} e^{0.3|y_{boost} - y_i|}$ with $y_{boost} = 1/n_{jets} \sum_{i \in jets} y_i$
- reduces to $\mu_{R/F} = \frac{1}{2} p_{\perp} e^{0.3y^*}$ with $y^* = \frac{1}{2} |y_1 - y_2|$ for $2 \rightarrow 2$ and captures real emission dynamics

Ellis, Kunszt, Soper PRD40(1989)2188

• better description of data at large rapidities, as expected

description of most other ables worsened

need proper description of forward physics (e.g. (B)FKL)

Try different scale

- $\mu_{R/F} = \frac{1}{4} H_T^{(y)}$ with $H_T^{(y)} = \sum_{i \in jets} p_{\perp,i} e^{0.3|y_{boost} - y_i|}$ with $y_{boost} = 1/n_{jets} \sum_{i \in jets} y_i$
- reduces to $\mu_{R/F} = \frac{1}{2} p_{\perp} e^{0.3y^*}$ with $y^* = \frac{1}{2} |y_1 - y_2|$ for $2 \rightarrow 2$ and captures real emission dynamics

Ellis, Kunszt, Soper PRD40(1989)2188

 better description of data at large rapidities, as expected

description of most other observables worsened

need proper description of forward physics (e.g. (B)FKL)

Marek Schönherr

Marek Schönherr

- small-∆y region
 ⇒ small uncertainty on additional jet production
- large- Δy region \Rightarrow all uncertainties sizable
- small- \bar{p}_{\perp} region \Rightarrow dominated by perturbative uncertainties
- large-p
 ⊥ region
 ⇒ non-perturbative
 uncertainties as large as
 perturbative uncertainties

Reduction of theoretical uncertainty necessitates better understanding of soft QCD and nonfactorisable contributions

Höche, MS arXiv:1208.2815

Marek Schönherr

IPPP Durham

Marek Schönherr

Höche, MS arXiv:1208.2815

Forward energy flow

- energy flow in rapidity interval per event with a central back-to-back di-jet pair
- normalisation reduces $\mu_{R/F}$ and μ_Q dependence
- dominated by MPI modeling uncertainty

Complete estimate of theoretical uncertainties

Perturbative uncertainties:

- unphysical scales of perturbative calculation μ_F , μ_R , μ_Q in any fixed-order-resummation matched calculation (LOPS, NLOPS, etc.) \rightarrow central value fits surprisingly good given perturbative uncertainties
- PDF uncertainties individually through respective error sets or replica globally through PDF4LHC accord (needs individual tunes for non-perturbative physics modelling for at least every central set)

Non-perturbative uncertainties:

• modelling uncertainties for non-perturbative physics with only little first principles basis

proper: use full set of eigentunes obtainable through e.g. PROFESSOR **approximate:** use canonical variation of characteristic activity measure

- MPI: $\langle N_{\rm ch} \rangle \pm 10\%$ of plateau in transverse region
- hadronisation: $\langle N_{\rm ch}
 angle \pm 1$ at LEP
- intrinsic k_{\perp} , beam remnants, ... ?

Conclusions

- SHERPA's MC@NLO formulation allows full evaluation of perturbative uncertainties (μ_F , μ_R , μ_Q)
- Mc@NLO can be easily combined with MEPs \rightarrow MENLOPs
- MC@NLO is a necessary input for NLO merging \rightarrow MEPS@NLO \Rightarrow see Frank's talk
- \Rightarrow will be included in next major release

Current release: SHERPA-1.4.1

http://sherpa.hepforge.org

• precise theoretical calculations need to be confronted with data as differentially as possible over as large a phase space as possible to identify physics region that needs improvement

Thank you for your attention!

Marek Schönherr

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

19

Marek Schönherr

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

20

Marek Schönherr

IPPP Durham