MEPS@NLO Mulitjet merging at NLO

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

PDF4LHC, IPPP Durham, 26.9.2012

< □ > < □ > < □ > < □ > < □ >

Multijet merging

F. Krauss MEPS@NLOMulitjet merging at NLO

Multijet merging: basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- combine ("merge") both:
 - separate phase space with jet definition
 - correct multijet Born ME to log accuracy
 - veto hard emissions in PS

result: "towers" of MEs with increasing number of jets evolved with PS But: cross section at Born accuracy

Why it works: jet rates with the parton shower

- Consider jet production in e⁺e⁻ → hadrons
 Durham jet definition: relative transverse momentum k_⊥ > Q_J
- fixed order: one factor α_{S} and up to $\log \frac{E_{c.m.}}{Q_{i}}$ per jet
- use Sudakov form factor for resummation:

/

$$\sim \mathcal{R}_2(Q_J) = \left[\Delta_q(E_{c.m.}^2, Q_J^2)\right]^2$$

$$\mathcal{R}_{3}(Q_{J}) = 2\Delta_{q}(E_{c.m.}^{2}, Q_{J}^{2}) \int_{Q_{J}^{2}}^{E_{c.m.}^{2}} dk_{\perp}^{2} \left[\frac{\alpha_{S}(k_{\perp}^{2})}{2\pi} dz \mathcal{K}_{q}(k_{\perp}^{2}, z) \right]$$
$$\times \frac{\Delta_{q}(E_{c.m.}^{2}, Q_{J}^{2})}{\Delta_{q}(k_{\perp}^{2}, Q_{J}^{2})} \Delta_{q}(k_{\perp}^{2}, Q_{J}^{2}) \Delta_{g}(k_{\perp}^{2}, Q_{J}^{2}) \right]$$

W+jets @ DØ: $p_{\perp,W}$ and y_{jet}

Di-photons @ DØ: $M_{\gamma\gamma}$, $p_{\perp,\gamma\gamma}$, & $\Delta\phi_{\gamma\gamma}$

(Update to Phys. Lett. B 690, 108 (2010), from analysis homepage)

Di-photons @ DØ: $p_{\perp,\gamma\gamma}$ in different mass bins

(Update to Phys. Lett. B 690, 108 (2010), from analysis homepage)

Photons+b @ DØ: $p_{\perp,\gamma}$ in different rapidities

(arXiv:1203.5865 [hep-ex])

▲ロト ▲郡 ▶ ▲臣 ▶ ▲臣 ▶ ○臣 ○の()

W+jets @ ATLAS: an update

(arXiv:1201.1276 [hep-ex], SHERPA 1.3.1 was not very good . . .)

MEPS@NLOMulitjet merging at NLO

F. Krauss

Rapidity gaps in $t\bar{t}$ @ ATLAS: gap probabilities

(arXiv:1203.5015 [hep-ex])

- * ロ > * @ > * 注 > * 注 > ・ 注 ・ の < @

Multijet merging at NLO in SHERPA

F. Krauss MEPS@NLOMulitjet merging at NLO

MEPs@NLO: example results for $e^-e^+ \rightarrow$ hadrons

- ◆ ロ ▶ ◆ 屈 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

MEPS@NLO: example results for W+ jets

ATLAS data

MEPS@NLO

MENLOPS

·· MC@NLO

140 160 180 p_ [GeV]

ATLAS data

MEPS@NLO MEPS@NLO u/2...2u

MENLOPS µ/2...2µ

MENLOPS

MC@NLO

120 140 *p*⊥ [GeV]

MEPs@NLO µ/2...2

MENLOPS u/2...2u

F. Krauss MEPS@NLOMulitjet merging at NLO

200 300 400 500 600 700 H_T [GeV]

F. Krauss MEPS@NLOMulitjet merging at NLO

|▲□▶▲@▶▲≧▶▲≧▶ == のへで

Summary

- Systematic improvement of event generators by including higher orders has been at the core of QCD theory and developments in the past decade:
 - multijet merging ("CKKW", "MLM")
 - NLO matching ("MC@NLO", "PowHEG")

(methods are well understood and used in experiments)

• Multijet merging now also at NLO (MEPS@NLO) -

need more tests before release.

- 4 同 ト 4 三 ト 4 三 ト

 multijet merging an important tool for many relevant signals and backgrounds, will become precision tool now -

LO and NLO algorithms have been pioneered by SHERPA