

NNPDF PLANS AND PROSPECTS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

FOR THE COLLABORATION: R. D. BALL, V. BERTONE, S. CARRAZZA, C. DEANS, L. DEL DEBBIO, S.F., A. GUFFANTI, N. HARTLAND J. I. LATORRE, J. ROJO, M. UBIALI

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

DURHAM, SEPTEMBER 26, 2012

THE NNPDF TIMELINE

8/2008 6/2009 2/2010 1/2011 7/2011 7/2012 (arXiv)

	NNPDF1.0	NNPDF1.2	NNPDF2.0	NNPDF2.1 NLO	NNPDF2.1 LO and NNLO	NNPDF2.2/2.3
DIS	~	~	~	~	~	~
Drell-Yan data	×	×	~	~	v .	×
Jet data	×	×	~	~	~	
LHC data	×	×	×	×	×	~
Independent param of the strange and anti-strange	×	~	~	~	~	~
Heavy Quark masses	×	×	×	~	~	~
NNLO	×	×	×	×	~	~

NNPDF2.3

- FIRST SET WITH SYSTEMATIC INCLUSION OF LHC DATA
- SOME METHODOLOGICAL IMPROVEMENTS (MINIMIZATION) MOSTLY AT NLO
- REDUCTION IN UNCERTAINTY ON PDFS, LUMINOSITY & STANDARD CANDLES, AT NLO IN EQUAL PROPORTION DUE TO METHODOLOGY & LHC DATA, AT NNLO MOSTLY DATA
- COLLIDER-ONLY FIT NOT YET COMPETITIVE

		$\sigma(W)$		+)	$\sigma(W)$		W ⁻)		$\sigma($		Z ⁰)	
NLO			NNLO	NLO		NNLO		NLO		NNLO		
NNPDF2.1		5.891 ± 0.133		6.198 ± 0.098	4.015 ± 0.091		4.213 ± 0.068		0.928 ± 0.018		0.972 ± 0.013	
NNPDF2.	3	5.854 ± 0.076		6.122 ± 0.078	4.057 ± 0.053		4.202 ± 0.059		0.931 ± 0.0	11	0.968 ± 0.012	
NNPDF2.3 NOLHC		5.886 ± 0.082		6.198 ± 0.109	4.039 ± 0.066		4.218 ± 0.072		0.931 ± 0.0	12	0.974 ± 0.015	
NNPDF2.3 COLLIDER		5.845 ± 0.104		6.127 ± 0.107	4.071 ± 0.074		4.234 ± 0.068		0.953 ± 0.016		1.000 ± 0.020	
				$\sigma(\mathrm{W})/c$	$\sigma(\mathbf{Z}^0)$		$\sigma(W^+)/\sigma(W^-)$					
NNPD			NLO		NNLO	NLO			NNLO	—		
		INPDF2.1 10		0.678 ± 0.031	10.707 ± 0.034		1.467 ± 0.018		1.471 ± 0.021	1		
	NNPDF2.3		10.650 ± 0.022		10.669 ± 0.034		1.443 ± 0.009		1.457 ± 0.013	3		
NNPDF2.3 NNPDF2.3 c		DF2.3 NOLHC	10	0.662 ± 0.025	10.692 ± 0.026		1.457 ± 0.022		1.470 ± 0.020	70 ± 0.020		
		F2.3 COLLIDER 1		0.403 ± 0.131	10.359 ± 0.124		1.436 ± 0.014		1.447 ± 0.015			
				$\sigma($	$t\overline{t}$)		$\sigma(\mathrm{H})$					
				NLO	NNLO		NLO		NNLO			
	NNPDF2.1 NNPDF2.3 NNPDF2.3NoLHC NNPDF2.3-collider			160.1 ± 5.4	158.6 ± 4.4	1	11.40 ± 0.18	15	$.22\pm0.22$			
				158.3 ± 4.0	157.1 ± 4.2	1	11.46 ± 0.13	15	$.31\pm0.20$			
			C	158.4 ± 4.3	157.1 ± 4.7	1	11.48 ± 0.14 1		5.30 ± 0.17			
			ER	151.2 ± 6.1	150.0 ± 5.3		10.80 ± 0.25		$.44 \pm 0.27$			

LHC 7 TEV

NNPDF2.3

CODE DEVELOPMENT: MIGRATION TO C++ MOTIVATIONS

- MODULAR, FLEXIBLE CODE; FASTER & EASIER TO DEBUG
- BETTER INTEGRATION WITH LIBRARIES (ROOT, BLAS, GSL)
- PARALLEL COMPUTATION (CPU/GPU CLUSTERS)
- PUBLIC CODE?

The NNPDFWizard

• It's also available a graphical interface wizard that creates easily configuration files compatibles with NNPDF++.

Inp	out/Output Configuration	Validphy			
Set data directory: * Set report directory: * Set plot file format: * Report type:	(data report/test png v		PDFs set name: * PDF version name: PDFs reference set: PDF reference version: Number of points to plot:	NNPDF21_100.LHgrid	•
	Light report (most important plots) v PDFs Configuration			2.0	
PDFs flavours: *	7 Data Set Configuration	*	NNPDF error bands:	Std Deviation (1-sigma)	
✓ ATLASJETS			Perturbative order: * initial scale Q ₀ ² (GeV ²): * Final scale O ² (GeV ²): *	Leading Order (LO) 2.00 2.00	0

Figure: Example of GUI available to create configuration files.

STRUCTURE OF NNPDF CODE & STATUS CODE MODULES

- buildmaster: COLLECTS DATA & PUTS THEM IN COMMON FORMAT
- filter: ENFORCES CUTS, CONSTRUCTS COVARIANCE MATRIX AND ITS INVERSE, GENERATES PSEUDODATA DONE
- evfactinter: COMPUTES FK EVOLUTION TABLES EXTERNAL FORTRAN MODULE
- nnsinglet: FIT PDFS TO DATA
- validphys: COMPUTES FINAL PREDICTIONS, STATISTICAL ESTIMATORS, PRODUCES PLOTS & REPORT DONE
- plotpdf: PRODUCES CATALOGUE OF PLOTS (INCLUDING BENCHMARKS)

FLOW-CHART FOR NNSINGLET

TO DO

DONE

DONE

METHODOLOGICAL IMPROVEMENTS

GOALS:

- MINIMIZE PARAMETER-TUNING AND REMOVE DEPENDENCE OF RESULTS ON IT
 EXAMPLE: CHOOSE PREPROCESSING BASED ON OBJECTIVE CRITERIA & VERIFY INDEP. OF RESULTS ON IT
- OBTAIN **STATISTCALLY SOUND** RESULTS

Example: χ^2 must follow a χ^2 distributions; can then determine $\Delta\chi^2$ criterion

PREPROCESSING CONSISTENCY

- **PREPROCESSING:** $f(x) = x^{\alpha} (1-x)^{\beta} NN(x)$; α , β RANDOMIZED IN RANGE USED TO SPEED TRAINING, SHOULD NOT AFFECT RESULTS
- DETERMINE EFFECTIVE EXPONENTS: E.G. $\alpha_{\text{eff}}(x, Q^2) \equiv \lim_{x \to 1} \ln \left(\Delta q(x, Q^2) \right) / \ln (1 x)$
- CHECK WHETHER RANGE OF PREPROCESSING WIDER THAN ONE-SIGMA EFFECTIVE EXPONENT RANGE
- IF NOT, WIDEN RANGE AND CHECK STABILITY OF RESULTS

SINGLET PREPROCESSING

MINIMIZATION WITH WEIGHT PENALTY

- OPTIMAL FIT CURRENTLY DETERMINED BY CROSS-VALIDATION: DATA RANDOMLY DIVIDED IN TWO SETS, χ^2 OF FITTED (TRAINING) DATASET KEEPS DECREASING BUT χ^2 OF NON-FITTED (VALIDATION) DATASET STARTS INCREASING
- MUST INTRODUCE THRESHOLDS FOR INCREASE & DECREASE BASED ON TYPICAL χ^2 FLUCTUATIONS
- ALTERNATIVE IDEA: INTRODUCE A MEASURE OF THE COMPLEXITY OF THE j-th NN: $\Delta_j = \sum_{i=1}^{N_w} (w_i^j)^2$
- THEN ADD TO χ^2 A WEIGHT-PENALTY $f(w_i) = \sum_{j=1}^{N_p df_s} \alpha_j \Delta_j$ and minimize χ^2
- CONSTANTS α_j determined by expected complexity of the j-th network based on previous fit
- FITS STOPS WHEN NETWORKS FIT THE DATA BUT ARE NOT TOO COMPLEX

NEW DATA

(all with covariance matrix info, either already available or in next few weeks/months)

TO BE INCLUDED ASAP (no new development needed)

- HERA-II ZEUS & H1 INCLUSIVE DIS STRUCTURE FUNCTIONS
- HERA II COMBINED F_2^c
- CMS W ASYMMETRY (FINAL 2011 FULL DATASET)
- CMS DRELL-YAN DOUBLE DIFFERENTIAL DISTRIBUTIONS

TO BE INCLUDED SOON (~January 2013: minor work needed)

- CMS 2011 INCLUSIVE JETS (FASTNLO/APPLGRID INTERFACING)
- **CMS** W + c (APPLGRID/MCFM INTERFACING)
- ATLAS+CMS TOP DIFFERENTIAL DISTRIBUTIONS (APPLGRID INTERFACE)

TO BE INCLUDED LATER

(\sim Spring 2013 or later: substantial work needed)

- Z LEPTON p_T DISTRIBUTIONS (INTERFACE TO GRAZZINI'S NNLO+RESUMMED CODE REQUIRED)
- **DIPHOTONS** (INTERFACE TO DEFLORIAN'S NNLO CODE REQUIRED)
- **PROMPT PHOTONS** (INTERFACE TO JETPHOX-NLO: VERY HARD)

THEORY IMPROVEMENTS

SHORT-TERM PROJECTS

 $(\sim January 2013: either already implemented, or minor work needed)$

- INTRINSIC CHARM (ALREADY IN CODE)
- $\overline{\mathrm{MS}}$ masses (already in code)
- **QED** EVOLUTION, REDUCED VERSION WITH PHOTON PDF ONLY PARAMETRIZED & ISOSPIN VIOLATION DYNAMICALLY GENERATED (ALMOST DONE)
- HIGHER TWISTS INCLUDED USING ABM FIT (TO DO, STRAIGHTFORWARD)

LONG-TERM PROJECTS (after ~Spring 2013: substantial work needed)

- THRESHOLD RESUMMATION, SMALL x RESUMMATION & DOUBLE RESUMMATION (CODE BY BONVINI ET AL. BEING DEVELOPED, MUST INTERFACE)
- THEORY ERRORS (GUFFANTI WORKING ON CACCIARI-HOUDEAU METHOD WITH NBI STUDENT, SCALE VARIATION WILL REQUIRE MORE WORK)
- MC PDFs (MAY BE PROJECT FOR STUDENT)

PARALLEL PROJECTS

(being pursued by subgroups)

- NUCLEAR PDFs (GUFFANTI+ALICE NBI GROUP) (IN PROGRESS)
- POLARIZED PDFS (WITH RIDOLFI & NOCERA: PRELIMINARY RESULTS PRESENTED AT DIS2012)

FUTURE PLANS

NEXT MAJOR RELEASE (NNPDF3.0) SUMMER 2013 WILL INCLUDE

- AS MANY LHC DATA AS POSSIBLE
- REQUIRED METHODOLOGICAL IMPROVEMENTS AND SOME THEORY IMPROVEMENTS

SOME INTERMEDIATE STUDIES: END 2012-EARLY 2013

- NNPDF2.3QED
- PDF SET WITH INTRINSIC CHARM (NNPDF2.4?)