

CTEQ-TEA Update

C.-P. Yuan Michigan State University

In collaboration with J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, Z. Liang, P. Nadolsky, J. Pumplin, D. Soper, D. Stump

September 26, 2012 @ PDF4LHC Meeting

Much has been said in Joey Huston's talk, such as benchmark studies.

CT10 NNLO and CT12 BLO/NLO PDFs

Some comparisons to data

Two sets of CT NNLO error PDFs

1. CT10 NNLO eigenvector set

Available at http://hep.pa.msu.edu/cteq/public/ct10_2012.html; is being submitted to LHAPDF; main focus of this talk

Complements the CT10/CT10W NLO PDF sets (Lai et al., PRD82, 074024 (2010))

- Includes only "pre-LHC" CT10 data. Can be used to predict LHC cross sections based on pre-LHC experimental inputs
- Same input parameters, functional forms for input PDFs as in the CT10 NLO PDFs
 - $\alpha_s(M_Z) = 0.118 \pm 0.002$, $m_c^{pole} = 1.3 \text{ GeV}$, $m_b^{pole} = 4.75 \text{ GeV}$
 - Simpler assumptions about the PDF flavor composition at $\mu_0 = m_c^{pole} = 1.3 \text{ GeV}$, e.g., $\bar{u}(x)/\bar{d}(x) \rightarrow 1 \text{ as } x \rightarrow 0$

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ◆

Two sets of CT NNLO error PDFs

2. CT12 NLO and NNLO eigenvector sets

To be released within a few months

- Include LHC W and Z rapidity data, ATLAS and CMS jet data, HERA'2011 F_L data
- Updated α_s, m_c , m_b values
- Flexible \bar{d}/\bar{u} ratio at $x \to 1$, updated $(s+\bar{s})/(\bar{u}+\bar{d})$ at $x \lesssim 10^{-2}$
 - Constrained by the LHC W/Z rapidity distributions

The CT10-NNLO global analysis of QCD

Parametrization of PDFs at Q = 1.3 GeV, with 25 parameter values to be chosen; there are from 4 to 6 parameters for each parton type.

Many data sets, for short distance interactions.

Perturbative QCD, using NNLO approximations wherever available.

Taking account of *experimental errors*, statistical and systematic.

(Not so strong on systematic *theoretical errors*.)

Heavy flavor mass effects are included using the *S*-ACOT- χ factorization formalism (extended to NNLO).

Ст10-М	INLO Table	Ndp	Chi^2	Nsv		28 data sets used for			
1/ 15	59 HERA1XO	579	617.	114	Combined HERA1 NC+CC DIS (2009)	the CT10-NNILO global			
2/ 10)1 BcdF2pCor	339	392.	5	BCDMS collaboration	the crito-inite global			
3/ 10)2 BcdF2dCor	251	291.	5	BCDMS collaboration	analysis			
4/ 10)3 NmcF2pCor	201	333.	11	NMC collaboration	,			
5/ 10)4 NmcRatCor	123	151.	5	NMC collaboration				
6/ 10)8 cdhswf2	85	70.5	0	P Berge et al Z Phys C49 187 (19	91)			
7/ 10	9 cdhswf3	96	77.9	0	P Berge et al Z Phys C49 187 (19	91)			
8/ 11	.0 ccfrf2.mi	69	67.8	5	Yang&Bodek model-independent				
9/ 11	1 ccfrf3.md	86	34.8	0	Shaevitz&Seligman model-dependen	it processed by SK			
10/ 20)1 e605	119	95.7	0	DY Q^3 dSig/dQ dy proton on hea	vy target			
11/ 20)3 e866f	15	9.7	0	E866 experiment: pd / 2pp				
12/ 22	25 cdfLasy	11	13.4		W production: decay lepton asymmetry CDF Run-1				
13/ 14	10 HN+67F2c	8	9.3	0	H1 neutral current charm				
14/ 14	13 HN+90X0c	10	16.3	8	H1 neutral current charm				
15/ 15	56 ZN+67F2c	18	13.4	0	ZEUS neutral current charm				
16/ 15	57 ZN+80F2c	27	16.7	0	ZEUS neutral current charm				
17/ 12	24 NuTvNuChXN	38	29.6	0	NuTev Neutrino Dimuon Reduced xSec				
18/ 12	25 NuTvNbChXN	33	28.4	0	NuTev Neutrino Dimuon Reduced xSec				
19/ 12	26 CcfrNuChXN	40	48.0	0	Ccfr Neutrino Dimuon Reduced xSec				
20/ 12	27 CcfrNbChXN	38	26.4	0	Ccfr Neutrino Dimuon Reduced xSec				
21/ 20)4 e866ppxf	184	234.	0	E866 experiment: DY pp: Q^3 dSig	/dQ dxf			
22/ 26	50 ZyD02a	28	15.6	6	Z rapidity dist. (DO TeV II-a)				
23/ 26	51 ZyCDF2	29	46.5	6	Z rapidity dist. (CDF TeV II)				
24/ 22	27 cdfLasy2	11	11.4	0	W production: decay lepton asymmetry CDF Run-2				
25/ 23	31 d02Easyl	12	26.0	0	W production: decay elec asymmetry D0 Run-2 Pt>25				
26/ 23	34 d02Masyl	9	14.8	0	W production: decay muon asymmet	ry D0 Run-2 Pt>20			
27/ 50)4 cdf2jtCor2	72	101.	24	(run II: cor.err; ptmin & ptmax)				
28/ 51	.4 d02jtCor2	110	114.	23	(run II: cor.err; ptmin & ptmax)				

CT10 NNLO PDFs

Figure 3: CT10-NNLO parton distribution functions. These figures show the *alternate fits* for the CT10-NNLO analysis. Each graph shows $x u_{\text{valence}} = x(u - \overline{u}), x d_{\text{valence}} = x(d - \overline{d}), 0.10 x g$ and $0.10 x \overline{q}$ sea as functions of x for a fixed value of Q. The values of Q are 2,3.16,8,85 GeV. Sea = $2(\overline{d} + \overline{u} + \overline{s})$. The dashed curves are the central NLO fit, CT10.

CT10 NNLO error PDFs (compared to CT10W NLO)

C.-P. Yuan (MSU)

SUSY 2012, Beijing, China

Experimental "Errors" (or, Uncertainties)

An experiment publishes N measurements,

{M_i; i = 1,2,3,...,N}.

Each measurement has several parts,

that is,

$$D_{i} = True_{i} + \sigma_{0i} r_{0i} + \sum_{k=1}^{Nsy} \sigma_{ki} r_{k}$$

...where r_{0i} and $\{r_k\}$ are random variables (gaussian?)

Define

$$\chi^{2} = \sum_{i} (D_{i} - \sum_{k} \sigma_{ki} r_{k} - T_{i})^{2} / \sigma_{0i}^{2} + \sum_{k} r_{k}^{2}$$

...and minimize with respect to both the normalized systematic shifts $\{r_k\}$ and the theory parameters.

"Histogram of Residuals"

We define the *residual* by

Residual_i =
$$\frac{sD_i - T_i}{\sigma_{0i}}$$

(*i* = 1, 2, 3, ..., NDP)

For good agreement between data and theory , the residuals should have a Gaussian distribution with mean = 0 and standard deviation = 1.

Theory = CT10-NNLO, i.e., <u>the central fit</u>; sData = Data **MINUS** the optimized systematic errors;

Black curve = ideal Gaussian distribution

$HERA: \bar{e} P \rightarrow \bar{e} X$

HERA Combined Data: HERA combined data: e± p deep inelastic scattering residual = $(sD-T)/\sigma_0$ 1.0 0.8 397/366 0.8 109/145 e+ p , NC DIS 0.0 0.6 0.4 $\chi 2 / N = 397/366$ Frequency 0.6 0.4 e-p, NC DIS 0.2 0.2 $\chi 2 / N = 109 / 145$ 0.0 0.0 -2 0 2 -2 0 2 -4 4 -4 4 Residual Residual e+ p , CC DIS $\chi^2/N = 33/34$ 1.0 1.0 33/34 0.8 0.8 19/34 p, CC DIS 0.0 b.0 0.4 **e-**Frequency 0.6 $\chi^2 / N = 19/34$ 0.4 0.2 0.2

0.0

-4

-2

0

Residual

The CT10-NNLO central fit

 $(N_{dp}, N_{sy}) = (579, 114)$

4

2

0.0

-4

-2

0

Residual

2

4

Inclusive Jet Production in Run 2 at the Tevatron Collider - CDF

 $(N_{dp}, N_{sy}) = (72, 25)$

Inclusive Jet Production in Run 2 at the Tevatron Collider – D0

The red curves are the theoretical calculations with CT10-NNLO PDFs, i.e., <u>the central fit</u>.

 $(N_{dp}, N_{sy}) = (110; 23)$

CT10 NNLO central PDFs, as ratios to NLO, Q=2 GeV

1. At $x < 10^{-2}$, $\mathcal{O}(\alpha_s^2)$ evolution suppresses g(x, Q), increases q(x, Q)2. c(x, Q) and b(x, Q) change as a result of the $\mathcal{O}(\alpha_s^2)$ GM VFN scheme 3. In large x region, g(x, Q) and d(x, Q) are reduced by not including Run-1 inclusive jet data, revised EW couplings, alternative treatment of correlated systematic errors, scale choices.

C.-P. Yuan (MSU)

SUSY 2012, Beijing, China

CT10 NNLO central PDFs, as ratios to NLO, Q=85 GeV

g(x,Q) is also reduced in large x region.

▶ < ≣ ▶

Image: A matrix

Comparison of CT10 predictions with unshifted ATLAS jet data:

()

Comparison of CT10 predictions with shifted ATLAS jet data:

3 x 3

Image: A math a math

()

CT12 NLO predictions for LHC jet production ATLAS single-inclusive jet production (arXiv:1112.6297); FastNLO 2; R=0.6; $\chi^2/N_{d.o.f} = 0.72 (0.98)$ for CT12 NLO (CT10 NLO)

CT10 NNLO and CT12 PDFs (black lines) predict smaller jet cross sections at large p_T , as a result of reduced g(x, Q) in large x region.

100

No syst, shifts

200

CT12 PDF error

CT10 PDF error

Ratio to CT12 theory (prel.)

0.5

2.1</vl>
 2.1</vl>
 ATLAS inc. iet (R=0.6)

PREI IMINARY

400

500

300

P_T (GeV)

600

- E - F

CT10 NNLO PDFs compared to MSTW NNLO

1. CT10 gluon and quarks are harder at $x \to 0$; $g(x,Q_0) > 0$ at $10^{-5} \le x \le 1$

2. The CT10 strange PDF is larger at $x \sim 10^{-3}$

C.-P. Yuan (MSU)

CTI0-NNLO compared with other PDFs for W boson production (NNLO)

CTI0-NNLO compared with other PDFs for Z boson production (NNLO)

CTI0-NNLO compared with other PDFs

NNLO cross section and PDF induced uncertainty for gg->H (using ResBos2 program)

$$\Delta \sigma_{\mathrm{PDF}} = rac{1}{2} \sqrt{\sum_{i=1}^d \left(\sigma_i^{(+)} - \sigma_i^{(-)}\right)^2}.$$

arXiv:1205.4311 [hep-ph]

M=125 GeV

	CTEQ6.6	CT10 NLO	CT10W NLO	CT10 NNLO	MSTW2008NNLO	NNPDF2.3NNLO
Tevatron	$0.77\pm6.9\%$	$0.77\pm6.9\%$	$0.76\pm7.0\%$	$0.77\pm6.9\%$	$0.78\pm6.4\%$	$0.80 \pm 4.6\%$
LHC 7 TeV	$12.80\pm6.1\%$	$13.33\pm6.1\%$	$12.82\pm5.1\%$	$12.65\pm5.8\%$	$12.69\pm4.5\%$	$13.73\pm3.0\%$
LHC 8 TeV	$16.31\pm5.5\%$	$16.53\pm5.5\%$	$16.95\pm4.8\%$	$16.63\pm5.6\%$	$16.30\pm4.5\%$	$16.90\pm5.5\%$
LHC 14 TeV	$42.39\pm8.5\%$	$42.64\pm8.5\%$	$42.91\pm7.1\%$	$41.87\pm7.7\%$	$43.10\pm6.4\%$	$43.28\pm5.9\%$

TABLE II: The total cross sections (in pb) for Higgs boson production via $g + g \rightarrow H + X$ at the Tevatron (1.96 TeV) and LHC (7 TeV, 8 TeV and 14 TeV) by using different PDF sets in ResBos2. The PDF induced uncertainties are estimated at 90% confidence-level, and expressed in the form of percentages.

Uncertainties of cross sections for gg->H (using ResBos2 program)

$$\Delta \sigma_{lpha_s} = rac{1}{2} \sqrt{\left[\sigma_0(A_{-2}) - \sigma_0(A_2)
ight]^2}.$$

(at 90% CL, with the range of 0.116 to 0.120)

$$(\Delta \sigma)^2 = (\Delta \sigma_{
m PDF})^2 + (\Delta \sigma_{lpha_s})^2$$

M=125 GeV

CT10-NNLO	σ_0	$\Delta \sigma_{ m PDF}$	$\Delta \sigma_{lpha_s}$	$\Delta \sigma = \sqrt{(\Delta \sigma_{\rm PDF})^2 + (\Delta \sigma_{\alpha_s})^2}$
Tevatron	0.77	$\pm 6.9\%$	$\pm 1.8\%$	$\pm 7.1\%$
LHC 7 TeV	12.65	$\pm 5.8\%$	$\pm 2.5\%$	$\pm 6.3\%$
LHC 8 TeV	16.63	$\pm 5.6\%$	$\pm 3.5\%$	$\pm 6.6\%$
LHC 14 TeV	41.87	$\pm 7.7\%$	$\pm 5.3\%$	$\pm 9.3\%$

Total NNLO cross section for gg->H (comparing various codes)

υ

	$m_H (\text{GeV})$	ResBos2	ResBos	HNNLO (NNLO)	HqT2 (NNLL+NLO)
	115	$0.98^{+9.2\%}_{-6.1\%}$	$0.91^{+15.7\%}_{-6.9\%}$	$0.96^{+13.6\%}_{-13.7\%}$	$0.97^{+14.2\%}_{-13.8\%}$
Tevatron	120	$0.87^{+9.2\%}_{-6.9\%}$	$0.80^{+15.8\%}_{-6.6\%}$	$0.84^{+13.4\%}_{-13.7\%}$	$0.85^{+13.9\%}_{-13.8\%}$
	125	$0.77^{+9.1\%}_{-6.5\%}$	$0.71^{+15.9\%}_{-6.5\%}$	$0.75^{+13.5\%}_{-14.2\%}$	$0.75^{+13.8\%}_{-13.8\%}$
	130	$0.68^{+10.3\%}_{-5.9\%}$	$0.63^{+15.9\%}_{-6.4\%}$	$0.66^{+14.5\%}_{-13.1\%}$	$0.67^{+13.9\%}_{-13.8\%}$
	115	$15.11^{+7.8\%}_{-5.8\%}$	$14.21_{-5.9\%}^{+8.3\%}$	$15.16^{+9.0\%}_{-10.7\%}$	$15.19^{+10.8\%}_{-10.4\%}$
LHC 7 TeV	120	$13.89^{+7.8\%}_{-5.7\%}$	$13.06^{+8.4\%}_{-5.8\%}$	$13.80^{+10.6\%}_{-10.5\%}$	$13.94^{+10.2\%}_{-10.4\%}$
	125	$12.80^{+7.7\%}_{-5.5\%}$	$12.03^{+8.5\%}_{-5.6\%}$	$12.72^{+10.2\%}_{-10.6\%}$	$12.83^{+10.7\%}_{-10.4\%}$
	130	$11.83^{+7.7\%}_{-5.4\%}$	$11.12^{+8.6\%}_{-5.5\%}$	$11.75^{+10.8\%}_{-10.7\%}$	$11.84^{+9.9\%}_{-10.4\%}$
	115	$19.15^{+7.5\%}_{-6.5\%}$	$17.58^{+8.1\%}_{-7.1\%}$	$19.05^{+9.9\%}_{-9.2\%}$	$19.25^{+10.8\%}_{-9.8\%}$
LHC 8 TeV	120	$17.65^{+7.5\%}_{-6.5\%}$	$16.21^{+8.1\%}_{-7.1\%}$	$17.59^{+9.7\%}_{-9.9\%}$	$17.76^{+9.8\%}_{-10.1\%}$
	125	$16.31^{+7.5\%}_{-6.4\%}$	$14.98^{+8.1\%}_{-7.0\%}$	$16.26^{+10.2\%}_{-10.4\%}$	$16.39^{+9.8\%}_{-10.1\%}$
	130	$15.11^{+7.5\%}_{-6.4\%}$	$13.89^{+8.1\%}_{-7.0\%}$	$15.07^{+10.9\%}_{-10.6\%}$	$15.17^{+10.3\%}_{-10.1\%}$
	115	$48.84^{+7.6\%}_{-5.7\%}$	$46.03^{+10.0\%}_{-5.3\%}$	$49.24^{+9.4\%}_{-9.8\%}$	$48.90^{+9.0\%}_{-9.8\%}$
LHC 14 TeV	120	$45.45^{+7.5\%}_{-5.5\%}$	$42.84^{+9.8\%}_{-5.2\%}$	$45.57^{+10.4\%}_{-9.5\%}$	$45.52^{+10.3\%}_{-8.4\%}$
	125	$42.39^{+7.4\%}_{-5.4\%}$	$39.96^{+9.6\%}_{-5.0\%}$	$42.61^{+9.6\%}_{-9.7\%}$	$42.57^{+9.7\%}_{-8.8\%}$
	130	$39.65^{+7.3\%}_{-5.2\%}$	$37.38^{+9.4\%}_{-4.8\%}$	$39.93^{+11.1\%}_{-9.8\%}$	$39.75^{+9.7\%}_{-8.9\%}$

TABLE I: The ResBos2, ResBos, HNNLO and HqT2 predictions on the total cross sections (in pb) for Higgs boson production via $g+g \rightarrow H+X$ at the Tevatron (1.96 TeV) and LHC (7 TeV, 8 TeV and 14 TeV). The upper (lower) uncertainties, expressed in the form of percentages, are obtained by dividing (multiplying) the canonical scale by a factor of two.

FIG. 1: The different theoretical predictions on the transverse momentum distributions for the Higgs boson production at the Tevatron (1.96 TeV) and the LHC (7 TeV, 8 TeV and 14 TeV). In the bottom of each plot, the ratios to ResBos2 predictions are also shown.

Comparison between Z and W NNLO cross sections (7 TeV)

Comparison between Z and W NNLO cross sections (8 TeV)

ResBos predictions for W-lepton rapidity distribution using CTI0-NNLO

ATLAS Collaboration, PRD85 (2012) 072004

ResBos predictions for W-lepton charge asymmetry using CTI0-NNLO

ATLAS Collaboration, PRD85 (2012) 072004

ResBos predictions for Z rapidity distribution using CTI0-NNLO

ATLAS Collaboration, PRD85 (2012) 072004

```
CT10(W) vs. A_{\ell}: LHC-B
```


LHCb asymmetry measurement; from PDF4LHC Mar 7

LHC-B marginally prefers CT10W

Strangeness in CT12 PDFs and LHC W/Z cross sections

In 2008, our CTEQ6.6 PDF correlation analysis pointed out the sensitivity of ratios σ_W/σ_Z at the LHC to the strangeness PDF, with implications to EW precision measurements (Nadolsky, Lai, Cao, Huston,

Pumplin, Tung, Yuan, PRD, 78 (2008) 013004).

The ATLAS analysis (arXiv:1203.4051) of W and Z production suggests that $\bar{s}(x,Q)/\bar{d}(x,Q) = 1.00^{+0.25}_{-0.28}$ at x = 0.023 and $Q^2 = 1.9$ GeV²

What is the impact of LHC W and Z data on CT12 PDFs?

C.-P. Yuan (MSU)

Small-x limits of $\bar{d}(x,Q)/\bar{u}(x,Q)$ and $\bar{s}(x,Q)/\bar{u}(x,Q)$ in the CT12 analysis (PRELIMINARY)

The CT12 analysis explores the possibility of $\lim_{x\to 0} \bar{d}/\bar{u} \neq 1$. Some "unbiased" CT12 candidate fits have $\bar{s}(x, Q)/\bar{u}(x, Q) > 1$ at $x < 10^{-3}$.

We would like to better understand the flavor decomposition at small x before releasing the CT12 PDFs.

C.-P. Yuan (MSU)

SUSY 2012, Beijing, China

Conclusions

- The CT10 NNLO PDF analysis (based on pre-LHC data only) is released. It is based on a new streamlined implementation of heavy-quark DIS contributions at two loops (Guzzi et al., arXiv:1108.5112).
- The CT12 NLO and NNLO analysis (in progress) will include latest LHC data on W, Z, and jet production. Possible impact on SU(3) properties of quark sea at $x < 10^{-3}$.
- Several factors that are comparable to NNLO contributions (treatment of percentage corr. syst. errors, choices of scales, electroweak radiative contributions, ...) have been thoroughly examined in this analysis
- We use a specific choice to evaluate these factors in the CT12 (N)NLO fits. The uncertainty associated with this choice need to be examined in the future

C.-P. Yuan (MSU)

SUSY 2012, Beijing, China