Electroweak corrections to single-top production processes

EDOARDO MIRABELLA

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Workshop on electroweak corrections for LHC physics – p.1/9

Outline

Motivation

- Experimental status
- LO & NLO QCD corrections
- EW corrections
 - *t*-channel
 - \bullet tW production
 - s-channel
- Conclusions

Motivations

Single top production in the SM ...

tW production

s-channel

Motivations

Single top production in the SM ...

tW production

s-channel

- ... is important:
 - direct way to measure V_{tb} .
 - \hookrightarrow no assumptions on the # of quarks
 - benchmark for the Wtb coupling.
 - $\hookrightarrow V A$ structure . . .
 - \hookrightarrow . . . via the *t* polarization
 - background of other processes.
 - \hookrightarrow Higgs searches, SUSY-like signals . . .
 - sensitive to new physics
 - \hookrightarrow new couplings & production modes
 - \hookrightarrow loop effects.

Single top production @ the Tevatron ...

tW production 7%

 $s\text{-channel}\ 31\%$

First measurement of single top production [CDF, '09 D0; '09]

Single top production @ the Tevatron ...

s-channel 31%

First measurement of single top production [CDF, '09 D0; '09]

● Single top production @ the LHC ...

tW production 19%

s-channel 5%

channels are disentangled [ATLAS '12; CMS '12]

Single top production @ the LHC ...

s-channel 5%

channels are disentangled [ATLAS '12; CMS '12] ٩

10

Single top production in the SM: ...

- Next-to-leading order (NLO)
 - → 5-flavor schemes [Bordes, van Eijk '95; Giele, Keller, Laenen '96; Smith, Willenbrock '96; Stelzer, Sullivan Willenbrock '97 '98; Zhu '02; Harris, *et al.* '02; ; Sullivan '04 '05]
 - \hookrightarrow *t*-channel in 4-flavor schemes [Campbell *et al.* '06 '09]

Single top production in the SM: ...

- Next-to-leading order (NLO)
 - → 5-flavor schemes [Bordes, van Eijk '95; Giele, Keller, Laenen '96; Smith, Willenbrock '96; Stelzer, Sullivan Willenbrock '97 '98; Zhu '02; Harris, *et al.* '02; ; Sullivan '04 '05]
 - \hookrightarrow t-channel in 4-flavor schemes [Campbell et al. '06 '09]
- NLO + Decay
 - Narrow width approx. [Campbell, Ellis, Tramontano '06; Cao, Yuan '05; Cao et al. '05]
 - Effective field theory [Falgari et al. '10 '11]

Single top production in the SM: ...

- Next-to-leading order (NLO)
 - → 5-flavor schemes [Bordes, van Eijk '95; Giele, Keller, Laenen '96; Smith, Willenbrock '96; Stelzer, Sullivan Willenbrock '97 '98; Zhu '02; Harris, *et al.* '02; ; Sullivan '04 '05]
 - \hookrightarrow t-channel in 4-flavor schemes [Campbell et al. '06 '09]
- NLO + Decay
 - Narrow width approx. [Campbell, Ellis, Tramontano '06; Cao, Yuan '05; Cao et al. '05]
 - Effective field theory [Falgari et al. '10 '11]
- Soft gluon resummation [Mrenna, Yuan '98; Kidonakis, '06 '07 '11]

Single top production in the SM: ...

- Next-to-leading order (NLO)
 - → 5-flavor schemes [Bordes, van Eijk '95; Giele, Keller, Laenen '96; Smith, Willenbrock '96; Stelzer, Sullivan Willenbrock '97 '98; Zhu '02; Harris, *et al.* '02; ; Sullivan '04 '05]
 - \hookrightarrow t-channel in 4-flavor schemes [Campbell et al. '06 '09]
- NLO + Decay
 - Narrow width approx. [Campbell, Ellis, Tramontano '06; Cao, Yuan '05; Cao et al. '05]
 - Effective field theory [Falgari et al. '10 '11]
- Soft gluon resummation [Mrenna, Yuan '98; Kidonakis, '06 '07 '11]
- NLO + PS
 - MC@NLO [Frixione et al. '06 '08; Frederix, Re, Torrielli '12]
 - MCFM [Campbell, Ellis '12;]
 - POWHEG [S. Alioli et al. '09; E. Re '11; Frederix, Re, Torrielli '12]

Workshop on electroweak corrections for LHC physics – p.5/9

Single top production in the SM: ...

tW production

s-channel

Impact of the corrections @ LHC

Workshop on electroweak corrections for LHC physics – p.5/9

STATUS

Computed in the Sudakov limit [Beccaria, Renard, Verzegnassi '05]

 \hookrightarrow kinematc invariants $\gg M_W^2$

full NLO within the SM and MSSM [Beccaria, Macorini, Renard, Verzegnassi '07;

Beccaria, Carloni Calame, Macorini, EM, Piccinini, Renard, Verzegnassi '08]

- parton-level computation within SM [Bardin, Bondarenko, Kalinovskaya, Kolesnikov, von Schlippe '10] within the SANC framework
- photon induced production missing

 \hookrightarrow may be important (e.g. $PP \rightarrow t\bar{t}$)

TECHNICAL DETAILS

- UV Renormalization
 - OS scheme
 - α in G_{μ} scheme
 - \hookrightarrow large logs absorbed in the α -definition
 - \hookrightarrow inclusion of $\mathcal{O}(\alpha m_t^2/M_W^2)$ two-loop terms. [Consoli *et al.* '89; Diener *et al.* '07]
- IR divergences
 - regularized using mass regularization
 - cancelled using phase space slicing & dipole subtraction
- Five-flavor scheme used

 \hookrightarrow but phenomenology in the four-flavor scheme

RESULTS ($\sqrt{S} = 14 \text{ TeV}$)

• Relative EW corrections in $t \& \overline{t}$ prod.

 \hookrightarrow the ratio $R_{t/\bar{t}} = (t \text{ prod.})/(\bar{t} \text{ prod.})$ unaffected

• EW corrections on $t + \bar{t}$ production:

 \hookrightarrow more important as the value of the cut increases

RESULTS ($\sqrt{S} = 14 \text{ TeV}$)

- p_T distribution for single $t \& \bar{t}$ prod.
 - $\hookrightarrow t$ production dominates
 - \hookrightarrow EW corrections similar in the two cases
- EW corrections on $t + \bar{t}$ production:
 - \hookrightarrow some percent in the low p_T region
 - \hookrightarrow more than 10 % in the $p_T > 300 \text{ GeV}$ region

STATUS

- Computed in the Sudakov limit [Beccaria, Renard, Verzegnassi '05]
 - \hookrightarrow kinematc invariants $\gg M_W^2$
- full NLO within the SM and MSSM [Beccaria, Macorini, Renard, Verzegnassi '06;

Beccaria, Carloni Calame, Macorini, Montagna, Piccinini, Renard, Verzegnassi '07]

photon-induced production missing

 \hookrightarrow tricky since $g\gamma \to t\bar{t} \to t\bar{b}W$, similarly to QCD [Frixione *et al.* '08]

STATUS

- Computed in the Sudakov limit [Beccaria, Renard, Verzegnassi '05]
 - \hookrightarrow kinematc invariants $\gg M_W^2$
- full NLO within the SM and MSSM [Beccaria, Macorini, Renard, Verzegnassi '06;

Beccaria, Carloni Calame, Macorini, Montagna, Piccinini, Renard, Verzegnassi '07]

photon-induced production missing

 \hookrightarrow tricky since $g\gamma \to t\bar{t} \to t\bar{b}W$, similarly to QCD [Frixione *et al.* '08]

- TECHNICAL DETAILS
 - UV Renormalization in OS scheme
 - IR divergences
 - mass regularization + phase space slicing
 - Five-flavor scheme used ...
 - $\hookrightarrow \ldots$ as implemented in PS MC event generators

RESULTS ($\sqrt{S}=14~{
m TeV}$)

Cumulative Invariant Mass

 $\hookrightarrow \sigma(M_{\rm tW}) = \int_{\rm th.}^{M_{\rm tW}} dM' \frac{d\sigma}{dM'}$

- \hookrightarrow EW corrections positive
- $\hookrightarrow \sim 6\%$ near threshold
- $\hookrightarrow \sim 3.5\%$ in the total cross section

RESULTS ($\sqrt{S}=14~{
m TeV}$)

- Cumulative Invariant Mass
 - $\hookrightarrow \sigma(M_{\rm tW}) = \int_{\rm th.}^{M_{\rm tW}} dM' \frac{d\sigma}{dM'}$
 - \hookrightarrow EW corrections positive
 - $\hookrightarrow \sim 6\%$ near threshold
 - $\hookrightarrow \sim 3.5\%$ in the total cross section

- Invariant Mass distribution \hookrightarrow positive (negative) for high (low) M_{tW}
- $\rightarrow \delta$ below 5% in the all range

STATUS

- \checkmark smallest channel at the LHC (5% of $\sigma_{
 m tot}$)
 - \hookrightarrow EW corrections least important
- Computed in the Sudakov limit [Beccaria, Renard, Verzegnassi '05]
 - \hookrightarrow kinematc invariants $\gg M_W^2$
- parton-level computation within SM [Bardin, Bondarenko, Kalinovskaya, Kolesnikov, von Schlippe '10]
 within the SANC framework
- photon-induced production missing

STATUS

- \checkmark smallest channel at the LHC (5% of $\sigma_{
 m tot}$)
 - \hookrightarrow EW corrections least important

Computed in the Sudakov limit [Beccaria, Renard, Verzegnassi '05]

 \hookrightarrow kinematc invariants $\gg M_W^2$

parton-level computation within SM [Bardin, Bondarenko, Kalinovskaya, Kolesnikov, von Schlippe '10] within the SANC framework

photon-induced production missing

TECHNICAL DETAILS (parton level)

- UV Renormalization in OS scheme
- IR divergences
 - mass regularization & phase space slicing

RESULTS (parton level + PDF factorization)

\sqrt{s} (TeV)	$\sigma^{\scriptscriptstyle \rm NLO}$ (pb)	δ _{EW} (%)	
0.2	0.328	6.5%	
1.0	0.100	-5.6%	
7.0	$1.46 \cdot 10^{-3}$	-35%	[Bardin et al. '10]

- \checkmark above 5% close to threshold
- ${\scriptstyle {\rm I}\hspace{-.05in}{\rm o}}$ negative for high enough \sqrt{s}
- big in the high energy region
 - \hookrightarrow suppressed by the PDF
 - \hookrightarrow compatible with Sudakov logs

Conclusions

Single top production

- phenomenologically relevant
 - measured at the LHC & Tevatron
- QCD effects extensively studied

Conclusions

Single top production

- phenomenologically relevant
 - measured at the LHC & Tevatron
- QCD effects extensively studied

EW corrections

- their "bulk" is available
 - t-channel in the 4-flavor scheme missing ...
 - ... s-channel as well
- percent-level corrections to the total cross section ...
- ... more important in the distributions
- realistic study needed

Conclusions

Single top production

- phenomenologically relevant
 - measured at the LHC & Tevatron
- QCD effects extensively studied

EW corrections

- their "bulk" is available
 - *t*-channel in the 4-flavor scheme missing ...
 - ... s-channel as well
- percent-level corrections to the total cross section ...
- ... more important in the distributions
- realistic study needed

<u>Outlook</u>

- t-channel in the 4-flavor scheme @ NLO EW
- merge the channels in a single code ...
 - (s-channel as well)
- Interfaced with PS (BLHA?)