Measurements with $W \ {\rm and} \ Z \ {\rm bosons} \ {\rm at} \ {\rm ATLAS}$

Workshop on electroweak corrections for LHC physics

Jan Kretzschmar

University of Liverpool On behalf of the ATLAS collaboration

Durham, 24.9. - 26.9.2012

LHC Performance

- LHC colliding protons at $\sqrt{s} = 8$ TeV, reaching up to $\mathcal{L} = 8 \cdot 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- 2010 data ($\int \mathcal{L} \approx 35 \, \mathrm{pb}^{-1}$ @ $\sqrt{s} = 7 \, \mathrm{TeV}$) basis for many precision results
- Many results based on 2011 data ($\int \mathcal{L} \approx 4.7 \, \text{fb}^{-1}$ @ $\sqrt{s} = 7 \, \text{TeV}$) to be published within coming weeks and months
- In 2012 accumulated so far $\approx 15 \, \text{fb}^{-1}$ @ $\sqrt{s} = 8 \, \text{TeV}$, expecting up to $2 \times$ more before end of year and first long shut down

The ATLAS Detector

- Precision EM calorimeter and tracking up to $|\eta| < 2.5 \rightarrow$ electrons
- Muon chambers up to $|\eta| < 2.7$, trigger coverage to $|\eta| < 2.4 \rightarrow$ muons
- Calorimetric coverage up to $|\eta| < 4.9 \rightarrow$ jets, E_T , "forward electrons"
- Excellent performance, typically $\sim 85\%$ of delivered luminosity with good data quality for analysis

EWK Physics with the ATLAS Detector

- Unprecedented \sqrt{s} and \mathcal{L} for searches and discoveries
- Collecting millions of $W \to \ell \nu$ and $Z \to \ell \ell$ events, some with extreme kinematics
- Very capable detector and trigger to collect and identify large fraction of $\ell = e, \mu$ events
- E.g. unprescaled single e and μ trig- $\frac{2}{5}$ gers with $p_T > 25$ GeV for full 2012 data; significantly lower for di-lepton triggers

Overview of W and Z measurements

- Most results based on e and μ channels, some on τ ; first studies of hadronic decays to appear soon
- Cross section measurements
 - W, Z inclusive production
 - W, Z + jets
 - W, Z + heavy flavour jets
- Boson properties
 - W polarisation
 - Lepton universality in W decays
 - τ polarisation in $W \to \tau \nu$

Cross section definitions

- Measurements are corrected to consistently defined "truth level" to allow proper theory comparisons
- General strategy is to publish *fiducial measurements* with minimal phase space extrapolations, typical phase space:
 - Charged leptons: $|\eta_{\ell}| < 2.5$ (or 2.4), $p_{T,\ell} > 20$ GeV
 - Extension for $Z \rightarrow ee$ for one lepton to $|\eta_{\ell}| < 4.9$
 - \blacksquare Neutrino and transverse mass for $W:\,p_{T,\nu}>25$ GeV, $m_T>40$ GeV
 - Mass for Z: $66 < m_{\ell \ell} < 116 \text{ GeV}$ (or $76 < m_{\ell \ell} < 106 \text{ GeV}$)
 - For measurements with jets:
 - Jets: $|y_{jet}| < 4.4$, $p_{T,jet} > 30 \text{ GeV}$
 - b-Jets: $|\eta_{\text{jet}}| < 2.1$, $p_{T,\text{jet}} > 25 \text{ GeV}$
 - Jets are defined with anti- k_T , R = 0.4 algorithm, isolated from leptons $\Delta R(\ell, \text{jet}) > 0.5$, clustered excluding leptons

Cross section definitions II

- QED "Final State Radiation" off leptons is one of the most important higher order electroweak corrections
- Affects both the experimental and theoretical level; different for e and μ
- Many ATLAS cross sections are published for three lepton definitions:
 - "bare" leptons, after QED FSR
 - "dressed" leptons: "bare" leptons recombined with QED FSR photons in cone $\Delta R < 0.1$
 - "born" leptons, before QED FSR (usually used for $e \mu$ channel combination)
- Example of ratios between "bare" or "dressed" to "born" level for inclusive (integrated and rapidity-differential) cross sections
- Corrections calculated with Photos interfaced to NLO or multi-leg generators

	W^-	W^+	Z
	Electron Channels		
$\delta^{ m bare}$	0.973	0.970	0.936
$\delta^{ m dressed}$	0.992	0.991	0.979
	Muon Channels		
$\delta^{ m bare}$	0.987	0.985	0.966
$\delta^{ m dressed}$	0.992	0.991	0.978

Jan Kretzschmar, 24.9.2012 – p.7

Inclusive W and Z Measurements

Integrated Total W and Z Cross Sections

- Classical measurements of weak boson production at hadron colliders compared to theory prediction at NNLO in QCD
- Experimental uncertainty small ($\sim 1\%$) compared to extrapolation to full phase space ($\sim 2\%$) and luminosity (3.4%)

Integrated Total W and Z Cross Sections

- More useful to consider correlations or ratios between measurements
- Measurement mostly in good agreement with the NNLO QCD prediction with 4 different PDFs

Integrated Fiducial W and Z Cross Sections

- Even more useful to consider fiducial integrated cross sections to avoid extrapolation uncertainty
- Measurement has more power to distinguish between different PDFs

$W \to \tau \nu$ and $Z \to \tau \tau$

- Total W and Z production cross section have also been measured in their τ decay channels
 - $W \to \tau \nu$ using hadronic τ decays
 - $Z \rightarrow \tau \tau$ using hadronic and leptonic decays
- Uncertainties are significant: 10 20%

PRD 84 (2011) 112006; PLB 706 (2012) 276-294; ATLAS-CONF-2012-006

W and Z Rapidity Differential Measurements

- Boson rapidity y directly linked to parton momentum fractions $x_{1,2} = M_{W,Z}/\sqrt{s} \cdot e^{\pm y}$
- W: charged lepton pseudo-rapidity η_{ℓ} used
- Absolute differential cross sections for Z, W^+, W^- with correlations
- Comparison to 4 different PDF sets at NNLO in QCD: broad agreement, but also indicates sensitivity to proton structure

Inclusive Theory Predictions

- With measurement accuracy of $\sim 2\%$ per bin (expected $\lesssim 1\%$ for 2011), precision of the theory prediction becomes a significant issue
- Only considering NNLO QCD predictions: FEWZ and DYNNLO allow predictions with fiducial cuts applied; main practical issue is required running time and sometimes numerical stability
- Higher order electroweak corrections become important at this level:
 - QED FSR mostly under control; however PHOTOS authors recommend currently conservative 0.5% uncertainty on differential distributions – would like to reduce this
 - Using G_{μ} scheme to minimise missing higher order corrections
 - Missing higher order effects estimated by SANC colleagues to be at the level 0.25% for W and 0.7% for Z
 - Differences between FEWZ and DYNNLO at the level 0.2, 0.5, 1.0% for Z, W⁺, W⁻ partially because of different treatment of electroweak parameter scheme

Inclusive Theory Predictions II

- Recent developments to combine HO QCD and EWK programs, e.g.:
 - FEWZ 3.1: $\mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_{EW})$ for $Z/\gamma^* \to \ell\ell$ (arXiv:1208.5967)
 - Powheg: NLO QCD + NLO EW + Parton Shower for $W \rightarrow \ell \nu$ (arXiv:1202.0465)
 - Such tools are quite useful to get a complete overview of all effects and their interplay ($O(\alpha_s \alpha)$ effects?)
- All published cross sections are quoted with a certain lepton definition ("bare", "dressed", "born"), which includes always some level of QED FSR corrections
- Mostly interested in the remaining higher order EWK effects (which should be applied to theory only)

W, Z data sensitivity to strange sea

- To test the impact of the W, Z data, ATLAS performed a QCD fit to Z, W^+, W^- + HERA ep DIS cross sections
- Using HERAFitter framework with fast MCFM+APPLGRID NLO QCD, corrected to NNLO QCD using k factors
- Significant tension is observed, when strange quark fraction $r_s = 0.5 \cdot (xs(x) + x\bar{s}(x))/x\bar{d}(x)$ is fixed to $r_s = 0.5$ at $Q^2 = 1.9 \,\text{GeV}^2$
- ATLAS W, Z improves from $\chi^2/n.d.f. = 44.5/30$ to $\chi^2/n.d.f. = 33.9/30$ when releasing strange constraint PRL 109 (2012) 012001

Jan Kretzschmar, 24.9.2012 - p.17

W, Z data sensitivity to strange sea

• Fit with free strange sea indicates no strange sea suppression at $Q^2 = 1.9 \,\mathrm{GeV}^2$ and x = 0.023

```
r_s = 1.00 \pm 0.20_{\text{exp}} \pm 0.07_{\text{mod}} \stackrel{+0.10}{_{-0.15}} \stackrel{+0.06}{_{\text{par}}} \pm 0.08_{\text{th}}
```

• Larger strange content also in better agreement with integrated W/Z cross section ratio

W, Z data sensitivity to strange sea

- Strange quark PDF compatible with CT10
- Significant differences observed to other PDF fits, where the strange density is constrained by fixed target data

W, Z transverse momentum p_T

- Bosons are produced at non-zero transverse momentum p_T
- Small boson p_T dominated by soft gluon resummation: measurement input to MC tuning and tests of resummed calculations; vital input for precise W mass measurement
- For large p_T calculable in pQCD
- Distribution also expected to be significantly affected by HO EWK corrections at very high p_T (possibly visible with 2011 or 2012 data)

Z transverse momentum p_T

- normalised $Z p_T$ distribution measured via di-lepton system
- Description of shape varies strongly between available models
- fixed order calculation needs $O(\alpha_s^2)$, significant scale uncertainty

W transverse momentum p_T

- normalised $W p_T$ distribution measured via hadronic recoil
- Similar conclusions for comparison to MC models and pQCD

PRD 85 (2012) 012005

W, Z + jet production

W, Z + jet production

- Production of jets in association with W and Z bosons in an interesting test of higher order QCD effects
- Measurements typically limited by uncertainties on jets and hadronisation effects
- Results compared to:
 - NLO QCD calculation by *BlackHat+Sherpa*
 - Tree-level matrix element generators Alpgen and Sherpa: important validation and tuning input, e.g. for searches
 - Both available for V + n jets with $n \simeq 0 \dots 5$
- No electroweak corrections considered so far (expected to be sizable at high jet p_T)

PRD85 (2012) 032009; PRD85 (2012) 092002; PLB 708 (2012) 221-240

$Z + \mathbf{jets}$

- In general very good agreement of data with NLO QCD prediction
- Both Alpgen and Sherpa are able to describe the data well (after overall normalisation to NNLO prediction)
- 2010 results still mostly statistics limited at high jet p_T and high multiplicities

W + jets

- Less statistics limited than Z + jets
- In general very good agreement of data with NLO QCD prediction
- Alpgen working quite well, while Sherpa underestimates the jet activity (improved in newer Sherpa versions)

W/Z ratio with 1 jet

- To explicitly cancel correlated uncertainties, a W/Z ratio measurement was performed with exactly 1 jet produced and different $p_{T,jet}$ thresholds
- Result in agreement with NLO QCD prediction

W, Z + b jet production

- W or Z production in association with heavy flavour jets (b and c) tests proton flavour structure and validates background description for searches
- Measured W + b cross section $\sim 1.5\sigma$ higher than QCD NLO calculation or MC predictions
- $\sigma(Z+b)$ measured to $\sim 25\%$ accuracy, mainly driven by low statistics; in agreement with QCD NLO and MC predictions
- Expecting updated results from 2011 data soon

W polarisation

- W bosons can be produced in three polarisation states: f_L, f_R, f_0
- Measured at significant transverse momentum by analysing lepton p_T and angular distribution using $\cos \theta_{2D} = \vec{p}_T^{\ell*} \cdot \vec{p}_T^W / |\vec{p}_T^{\ell*}| |\vec{p}_T^W|$
- Predominantly left-handed W production and non-zero longitudinal component as predicted by NLO Generators

W polarisation

- W bosons can be produced in three polarisation states: f_L, f_R, f_0
- Measured at significant transverse momentum by analysing lepton p_T and angular distribution using $\cos \theta_{2D} = \vec{p}_T^{\ell*} \cdot \vec{p}_T^W / |\vec{p}_T^{\ell*}| |\vec{p}_T^W|$
- Predominantly left-handed W production and non-zero longitudinal component as predicted by NLO Generators

Jan Kretzschmar, 24.9.2012 - p.30

Lepton Universality in $W \to \ell \nu$

- Integrated inclusive cross section measurements can be used to constrain W and Z leptonic branchings
- $Z \rightarrow \ell \ell$ branchings well know from LEP, but W less accurately constrained (for direct production)
- Current data confirm $e \mu$ universality in W decays to 2%

PRD85, 072004 (2012)

τ Polarisation in $W \to \tau \nu$

- First measurement of τ polarisation in $W \to \tau_h \nu$ at hadron collider
- Using hadronic one-prong τ decays, energy sharing of charged and neutral decay products: $\Upsilon = (E_T^{\pi^-} E_T^{\pi^0})/(E_T^{\pi^-} + E_T^{\pi^0})$
- $P_{\tau} = -1.06 \pm 0.04_{\text{stat}} + 0.05_{-0.07 \text{ syst}}$
- Applications e.g. for $H \to \tau \tau$ ($P_{\tau} = 0$) and search for new physics

EPJ C72 (2012) 2062

Summary

- Precise differential cross sections with impact on our knowledge of proton structure (strange quark density)
- Production in association with many jets or high boson p_T
- Tests and measurements of properties and EWK parameters of the SM
- "Electroweak corrections" are naturally omnipresent in W and Z production and consistent estimation of higher order effects beyond QED FSR remains a challenge: coming data will cover more extreme kinematics, where so far unaccounted corrections become sizable (e.g. high mass Z/γ^* , high di-lepton $p_{T,Z}$)
- Further collaboration between experimentalists and theorists probably needed to bring theory to the accuracy level of the next generation of data

Experimentalists Wish List

- Better estimation of QED FSR effects on inclusive and more differntial distributions beyond the conservative "0.5%" uncertainty?
- Completion of "integrated" higher order tools:
 - EWK+QCD FEWZ for $W \to \ell \nu$?
 - EWK Powheg for $Z/\gamma^* \to \ell \ell$?
 - How much is still missing from these tools, e.g. "full" $\mathcal{O}(\alpha_s \alpha)$?
 - Effects at $m_{\ell\ell}$ below and above Z peak
- Same or similar tools for large boson p_T and/or V+jet?

Z, W **DY** Production

PRD85, 072004 (2012)

Strange Density

W mass and EWK Fit arXiv:1209.2716

High Mass DY arXiv:1209.2535

- ATLAS search for high mass di-lepton resonances ("Z'")
- SM prediction of Z/γ^* at NNLO QCD using PHOZPR, EWK corrections using HORACE

