Electroweak Corrections for LHC Physics Diboson Production at ATLAS

Lynn Marx University of Manchester

IPPP Workshop, Durham, UK September 24, 2012

Motivation

A profound understanding of **Diboson Production** is important

- Irreducible background to important processes
 e.g. Higgs production
- Gauge boson **self-couplings**
 - fundamental prediction of non-abelian SU(2)xU(1) gauge symmetry
 - precision test of Standard Model and validity at high energies
 - not yet well measured
- Sensitive to new physics
 - SUSY (extended Higgs sectors H[±], $\tilde{\chi}^{\pm}\tilde{\chi}^{0}$ production)
 - extra vector bosons (W')
 - ► (technicolor?)

2

GeV

Events / 10

Outline

Present latest ATLAS Diboson Results

 $W(\rightarrow |\nu)\gamma$ $Z(\rightarrow ||)\gamma$ $WV \rightarrow |\nu|\nu$ $WZ \rightarrow |\nu||$ $ZZ \rightarrow ||||$ $ZZ \rightarrow ||||$

7 TeV, 1 fb⁻¹ 7TeV, 5 fb⁻¹ 8TeV, 6 fb⁻¹ Cross Section Measurements
 Anomalous Gauge Coupling Limits
 Unfolded Distributions (where available)

... then more specifically

- which corrections are taken into account as systematic uncertainties?
- where to expect strong electroweak corrections and how to address them?

SM Electroweak ATLAS Public Results

L. Marx (Manchester)

Cross Section Measurements - Methodology

Diboson analyses tend to measure **fiducial** and **total** cross sections

$$\sigma_{fid} = \frac{N_{obs} - N_{bkgd}}{\mathbf{C} \times \int \mathcal{L}dt} \qquad \sigma_{tot} = \frac{\sigma_{fid}}{\mathbf{A} \times BR}$$

$$\mathbf{V}$$
efficiency corrections
$$\sigma_{tot} = \frac{\sigma_{fid}}{\mathbf{A} \times BR}$$

Define fiducial phase space cuts

- as close as possible to analysis cuts
- using final state "truth" objects
- using "dressed" leptons with photons within $\Delta R = 0.1$
- using jets reconstructed with anti- k_T ($\Delta R = 0.4$) algorithm
- to reduce extrapolation to phase space regions with large theoretical uncertainties

Common Selection

Leptons

- p_T > 7-25 GeV, |**η**| < 2.5
- calorimeter and track isolation
- single lepton trigger, matching

Photons

10⁸

 10^{7}

 10^{6}

10⁴ 10³

180

E^{miss} [GeV]

рт

- p_T > 15 GeV, |**η**| < 2.37
- calorimeter isolation

Z→I⁺I⁻ Candidate

- 2 SF, OS isolated leptons
- mass window 10-25 GeV of PDG

Common Backgrounds

W/Z+jets (dominant)

- 1 or 2 prompt, isolated leptons
- real or fake missing energy
- jets can produce a fake or real lepton/photon
- primarily data-driven estimates
 - measure probability of jet producing lepton/photon

Тор

- 2 prompt, isolated leptons
- real missing energy
- large number of jets/b-jets
 - ▶ can produce a fake or real lepton
- remove by applying cuts on e.g.
 - ► impact parameter d₀
 - Njets
 - ► m_{II} (no real Z boson!)

Other diboson

estimated mostly from MC simulation

$W(\rightarrow Iv)\gamma$ and $Z(\rightarrow II)\gamma$

arXiv:1205.2531 [hep-ex]

Selection

- W or Z candidate with m_T or $m_{II} > 40$ GeV
- isolated photon, $E_T > 15$ GeV, $\Delta R(I, \gamma) > 0.7$
- inclusive and exclusive (jet veto $p_T > 30 \text{ GeV}$)

Main Backgrounds

W/Z+jets (jet faking photon or lepton) → data-driven (DD)

L. Marx (Manchester)

$|Z \rightarrow |v||$

arXiv:1208.1390 [hep-ex]

Data

Z+jets

WZ

Z+γ

Top

σ_{stat+svst}

Selection

- \geq 3 isolated leptons, p_T > 15 GeV
- Z candidate |m_{II}-m_Z| < 10 GeV
- Er^{miss} > 25 GeV
- W candidate m_T > 20 GeV

Main Backgrounds

- Z+jets $\rightarrow DD$
- $ZZ \rightarrow MC$
- top $\rightarrow MC$ (shape), DD (SF)

→ still statistically dominated

no gg at lower Ø

L. Marx (Manchester)

ATLAS Cross Section Summary

Process	√s [TeV]	L [fb ⁻¹]	σ ^{tot} [pb]	δ stat	δ syst	δ lumi	σ ^{NLO} [pb]	$\delta\sigma^{\text{NLO}}$
W(→Iν)γ	7	1	4.60	± 0.11	± 0.64	± 0.17	3.70	± 0.28
Z(→II)γ	7	1	1.29	± 0.05	± 0.15	± 0.05	1.23	± 0.06
WW→IvIv	7	5	53.4	± 2.1	± 4.5	± 2.1	45.1	± 2.8
WZ→IvII	7	5	19.0	+1.4/-1.3	± 0.9	± 0.4	17.6	+1.1/-1.0
ZZ→IIII	7	5	7.2	+1.1/-0.9	+0.4/-0.3	± 0.3	6.5	+0.3/-0.2
ZZ→IIvv	7	5	5.4	+1.3/-1.2	+1.4/-1.0	± 0.2	6.5	+0.3/-0.2
ZZ→IIII	8	6	9.3	+1.1/-1.0	+0.4/-0.3	± 0.3	7.4	± 0.4

Most cross sections seem to fluctuate $\sim 1\sigma$ high but within uncertainties individually agree with SM predictions

CMS Cross Section Summary

Anomalous Gauge Boson Coupling Limits

Model independent TGC effective Lagrangian depends on different parameters

In the Standard Model $g_1^V = \kappa^V = 1$ $\lambda^V = f_4^V = f_5^V = h_3^V = h_4^V = 0$

Expect change in production rate at high boson/lepton p_T . ATLAS and CMS use no form factor Λ to suppress divergence at high \sqrt{s} Use common limit setting code within ATLAS

Use leading lepton pT spectrum to set aTGC limits

L. Marx (Manchester)

L. Marx (Manchester)

1 fb⁻¹

L. Marx (Manchester)

Unfolding - Methodology

Motivation

Determine **true value** of an observable Measured value is distorted by detector's

- limited acceptance
- imperfect efficiency
- finite resolution

Method

Common Framework among Electroweak Group

- use iterative Bayesian unfolding (d'Agostini)
- normalized unfolding within fiducial region only
- based on RooUnfold using response matrix

Published Results

Fractional, binned kinematic distributions

• $\Delta\sigma^{\text{fid}}(x)/\sigma^{\text{fid}}$

Full correlation matrices (on HEPDATA)

• combined stat, syst, background

Efficiency Corrected Result

DemoVariable (Reco.)

5 fb⁻¹

Unfold **p**_T^z and **m**_{wz} spectra

IPPP Workshop, Durham, UK

Which corrections are taken into account?

Discuss in more detail different systematic uncertainties

1) "Generator" ($\mathcal{O}(\alpha_s) \mod 5$) Parton Shower2) QED FSR6) Jet veto3) PDF7) Backgrounds4) Scale (μ_F and μ_R)8) EW settings

Process	Generator	Notes/Issues
Wy	Alpgen	Np0-5, FSR Photos
Zγ	Sherpa	Np0-3, FSR Sherpa
VVVV	MC@NLO / gg2ww	W-width and spin correlations \checkmark
WZ	MC@NLO	boson widths ✔, Z/γ* ¥
ZZ→IIII	Sherpa	Z/ γ^* ✓, scale by K ^{NLO} _{MCFM} -factor, unique nTGCs
ZZ→IIvv	MC@NLO	on-shell, 0-width Z's, scale up for gg

Chose WW/WZ analyses as representative examples (treatment similar across analyses)

L. Marx (Manchester)

Systematic Uncertainties (theoretical)

GENERATOR

- mostly have NLO QCD or multi-leg available, use k-factors
- include gg contribution using k-factor or second generator
- if Z/γ^* interference missing
 - ▶ for WZ scale MC@NLO acceptance comparing to MCFM \rightarrow 1.8%
- differential distributions
 - If the for WZ compare MC@NLO to Powheg shape → up to ~4% (bin-dependent)

QED FSR

- often dominant effect in ew corrections
- use Photos or Sherpa
- fiducial phase space: dress leptons with photons within $\Delta R < 0.1$

PDF

for $\delta \sigma^{\text{NLO}}$ from MCFM • CT10 52 error sets $\rightarrow \pm 3\%$

SCALE

in general: $\mu_F = \mu_R = \mu$ vary by factor 2

- for inclusive
 - WW/ZZ fixed $\mu = m_{WW/ZZ} \rightarrow \pm 3\%$
 - WZ fixed $\mu = (m_W + m_Z)/2 \rightarrow \pm 5\%$
 - W/Z γ fixed $\mu = m_{W/Z}$
- for differential
- ► WZ dynamic $\mu^2 = (m^2_W + p^2_{T,W} + m^2_Z + p^2_{T,Z})/2 \rightarrow up$ to 8%

L. Marx (Manchester)

Systematic Uncertainties (theoretical)

PARTON SHOWER

necessary if jet veto in fiducial phase space
interface PowhegBox to Herwig and Pythia

BACKGROUNDS

correct MC to higher order calculations using k-factors or use data-driven estimates

JET VETO

avoid underestimation of scale uncertainty introduced by restricting QCD radiation

- due to cancellations between higher-order corrections and corrections from jet log dependence
- assume uncertainties in inclusive jet cross
 section uncorrelated (<u>Stewart-Tackmann</u> method)

EW SETTINGS

- not an uncertainty, but a choice (which should be consistent across analyses/experiments)
 ATLAS and CMS found 1.4% discrepancy in σ_{WW} using MCFM
- most generators "made" for QCD (only LO ew)
 - default ew settings not always the same
- working group to give exact recommendations
 - \blacktriangleright i.e. latest PDG values, running Breit-Wigner width, α_{QED}
- \bullet want to give σ_{tot} so need to divide by BR, but need to be careful
 - ▶ e.g. using pole BR for WZ/ZZ with Z* down to 20 GeV is clearly a problem
 - use BR as a function of mass window? if too far from mass peak only quote leptonic σ ?

Electroweak Corrections

No mention yet of electroweak corrections because there are **currently no event generators available that include electroweak corrections (NLO EW&QCD) for diboson production** (but see <u>talk</u> later!)

Important for **high energies** and **event rates** available at LHC (can reach tens of %) Resulting electroweak corrections

- are negative (strong enhancement of negative corrections if $s > m^2_{W,Z}$)
- strongly depend on energy and scattering angle
- \bullet strongly increase with p_{T}
- significantly modify rapidity and angular distributions (e.g. enhance "radiation zero" dip)

Difficulties

- leptonic (and hadronic?) decays of bosons
- need real emission of additional massive vector bosons
- interplay between electroweak and QCD corrections

ATLAS measurements

- need QCD order higher than NLO?
- very good sensitivity in hight p_T tails \rightarrow danger to set wrong limits because electroweak corrections, which bring σ down, not taken into account

Summary and Outlook

Diboson cross sections measured at 7 and 8 TeV with many updates to follow soon

- no deviation from SM observed yet
- setting most stringent TGC limits
- publishing unfolded distributions
- starting to become systematically dominated
 - → entering precision measurements

Thanks to outstanding LHC performance

much more 8 TeV data to analyse already

In light of higher $\sqrt{s},\, \mathcal{L}$ and 4^{th} July discovery

- need NLO EW&QCD generators for VV and VVjj (VBS/VBF!) production
- what about electroweak corrections in triboson final states?
- Higgs couplings important to disentangle associated Higgs production from tribosons

Guidance from theorists

- Is what we are doing sensible?
- Do we over/undercover anywhere? Want to avoid spurious systematics
- When/which diboson generators to expect with electroweak corrections?

Bibliography

• Measurement of the W_{γ} and Z_{γ} production cross sections in pp collisions at $\sqrt{s} = 7$ TeV and limits on anomalous triple gauge couplings with the ATLAS detector, CERN-PH-EP-2012-059, arXiv:1205.2531.

• Measurement of the **WW** cross section in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector and limits on anomalous gauge couplings, CERN-PH-EP-2012-060, <u>arXiv:1203.6232</u>.

• Measurement of the **WW** production cross section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, <u>ATLAS-CONF-2012-025</u>.

• Measurement of the **WZ** production in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, CERN-PH-EP-2012-179, <u>arXiv:1208.1390</u>.

• Measurement of the **ZZ** production cross section and limits on anomalous neutral triple gauge couplings in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, CERN-PH-EP-2011-166, <u>arXiv:1110.5016</u>.

• Measurement of the total **ZZ** production cross section in the four-lepton channel using 4.7 fb⁻¹ ATLAS data, <u>ATLAS-CONF-2012-026</u>.

• Measurement of the total **ZZ** production cross section in the IVV channel in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, <u>ATLAS-CONF-2012-027</u>.

• Measurement of the total **ZZ** production cross section in the four-lepton channel using 5.8 fb⁻¹ ATLAS data at $\sqrt{s} = 8$ TeV, <u>ATLAS-CONF-2012-090</u>.

The ATLAS Experiment

Acceptance and S/B numbers

A =	$\frac{N_{MC\ Truth}^{Pass\ Fiducial}}{N_{MC\ Truth}^{Pass\ Fiducial}}$
	$N_{MC}^{All} \stackrel{Generated}{Truth}$

 $C = \frac{N_{MC\ Reco}^{Pass\ Cuts}}{N_{MC\ Truth}^{Pass\ Fiducial}}$

Process	A (%)	C (%)	S/B	=
WW→evev	6.2	42.0	0.8	
₩₩→μνμν	5.2	76.8	1.2	
WW→µvev	16.3	55.1	2.0	
WZ→evee	33.0	38.0	2.7	
WZ→µvee	33.2	52.5	4.7	
WZ→evµµ	33.3	54.8	2.7	
WZ→µvµµ	33.8	78.0	3.9	
ZZ→eeee	64.8	46.0	16.5	
ZZ→µµee	64.8	60.0	89.3	
ZZ→µµµµ	64.8	81.0	55.3	- (
ZZ→eevv	8.4	61.2	1.1	
ΖΖ→μμνν	8.4	75.8	1.0	

E_{T}^{γ}	> 15 GeV	> 60 GeV	> 100 GeV
	$N_{ m j}$	$e_{\rm et} = 0, e {\rm chan}$	nel
$\overline{C_{W\gamma}}$	0.402 ± 0.049	0.574 ± 0.045	0.517 ± 0.043
$A_{W\gamma}$	0.762 ± 0.006	0.685 ± 0.017	0.672 ± 0.019
$C_{Z\gamma}$	0.397 ± 0.045	0.592 ± 0.044	-
$A_{Z\gamma}$	0.829 ± 0.014	0.834 ± 0.008	-
	$N_{ m j}$	$_{\rm et} = 0, \mu {\rm chan}$	nel
$\overline{C_{W\gamma}}$	0.453 ± 0.054	0.653 ± 0.057	0.675 ± 0.059
$A_{W\gamma}$	0.908 ± 0.006	0.764 ± 0.019	0.708 ± 0.017
$C_{Z\gamma}$	0.459 ± 0.052	0.641 ± 0.044	-
$A_{Z\gamma}$	0.915 ± 0.016	0.917 ± 0.008	-
	$N_{ m j}$	$e_{\text{tet}} \ge 0, e \text{ chan}$	nel
$\overline{C_{W\gamma}}$	0.453 ± 0.053	0.598 ± 0.036	0.576 ± 0.035
$A_{W\gamma}$	0.725 ± 0.050	0.657 ± 0.011	0.666 ± 0.017
$C_{Z\gamma}$	0.421 ± 0.044	0.609 ± 0.036	-
$A_{Z\gamma}$	0.826 ± 0.014	0.836 ± 0.050	_
	$N_{ m j}$	$_{\rm et} \geq 0, \mu {\rm chan}$	nel
$C_{W\gamma}$	0.511 ± 0.057	0.650 ± 0.035	0.624 ± 0.035
$A_{W\gamma}$	0.872 ± 0.005	0.776 ± 0.019	0.747 ± 0.023
$\overline{C_{Z\gamma}}$	0.485 ± 0.055	0.645 ± 0.035	-
$A_{Z \sim}$	0.915 ± 0.016	0.917 ± 0.005	-

L. Marx (Manchester)

Systematic uncertainties

WW

WZ

	Relative uncertainty (%)			
Source of uncertainty	evµv selection	evev selection	$\mu\nu\mu\nu$ selection	
Trigger efficiency	1.0	1.0	1.0	
Lepton efficiency	2.3	4.1	1.8	
Lepton $p_{\rm T}$ scale and resolution	0.4	1.0	0.1	
$E_{\rm T}^{\rm miss}$ modeling	0.6	1.0	2.2	
Jet energy scale and resolution	1.1	1.1	1.1	
Lepton acceptance	2.0	2.1	1.6	
Jet veto acceptance	5.0	5.0	5.0	
PDFs	1.4	1.2	1.2	
Total	6.2	7.2	6.2	

Source	eee	μee	$e\mu\mu$	$\mu\mu\mu$
μ reconstruction efficiency	_	0.3	0.5	0.8
$\mu p_{\rm T}$ scale & resolution	_	< 0.1	0.1	0.1
μ isolation & impact param.	_	0.2	0.4	0.6
e reconstruction efficiency	2.5	1.7	0.8	_
e identification efficiency	3.5	2.3	1.2	_
e isolation & impact param.	1.5	1.1	0.4	_
e energy scale	0.5	0.3	0.3	_
e energy resolution	0.1	0.1	< 0.1	_
$E_{\rm T}^{\rm miss}$ cluster energy scale	0.4	0.2	0.6	0.2
$E_{\rm T}^{\rm miss}$ jet energy scale	0.1	0.1	0.1	0.1
$E_{\rm T}^{\rm miss}$ jet energy resolution	0.3	0.3	0.4	0.2
$E_{\rm T}^{\rm miss}$ pile-up	0.3	0.1	0.3	0.1
Muon trigger	_	0.1	0.1	0.3
Electron trigger	< 0.1	< 0.1	< 0.1	_
Event generator	0.4	0.4	0.4	0.4
PDF	1.2	1.2	1.2	1.2
QCD scale	0.4	0.4	0.4	0.4
Luminosity	1.8	1.8	1.8	1.8

ZZ→4I

dominant from electron identification efficiency (5.8%/2.8% for eeee/eeμμ) and muon reconstruction efficiency (1.3%/0.6% for μμμμ/eeμμ)

ZZ→∥vv

dominant from jet veto (5.3%) and track isolation (4.0%/2.1% for $eevv/\mu\mu\nu\nu$)

L. Marx (Manchester)

Jet Veto and Stewart-Tackmann Method

Determine correction factor as $\epsilon_z^{\text{data}}/\epsilon_z^{\text{MC}}$ where $\epsilon=N_{0jet}/N_{\geq 0jet}$ data-driven \rightarrow reduces uncertainty on jet veto acceptance

Accidental cancellations with log terms introduced by restricting QCD radiation cause the scale uncertainty to be underestimated in a jet-binned analysis → assume uncertainties in inclusive jet-binned cross sections are uncorrelated, since the structure of perturbative series are different

Calculate uncertainty in jet veto acceptance as

$$\frac{\delta\epsilon^2}{\epsilon^2} = \left(\frac{1-\epsilon}{\epsilon}\right)^2 \left(\frac{\delta\sigma_{total}^2}{\sigma_{total}^2} + \frac{\delta\sigma_{\geq 1}^2}{\sigma_{\geq 1}^2}\right)$$

$W\gamma$ and $Z\gamma$ Production Processes

Wy and Zy Cross Sections

	$\sigma^{ m ext-fid}[m pb]$	$\sigma^{ m ext-fid}[m pb]$
	$E_{\rm T}^{\gamma} > 15 { m ~GeV}$	$E_{\rm T}^{\gamma} > 15 { m ~GeV}$
	exclusive	inclusive
$e u\gamma$	$3.42 \pm 0.14 \pm 0.50$	$4.35 \pm 0.16 \pm 0.64$
$\mu u\gamma$	$3.23 \pm 0.14 \pm 0.48$	$4.82 \pm 0.15 \pm 0.64$
$l u\gamma$	$3.32 \pm 0.10 \pm 0.48$	$4.60 \pm 0.11 \pm 0.64$
$e^+e^-\gamma$	$1.03 \pm 0.06 \pm 0.13$	$1.32 \pm 0.07 \pm 0.16$
$\mu^+\mu^-\gamma$	$1.06 \pm 0.05 \pm 0.12$	$1.27 \pm 0.06 \pm 0.15$
$l^+l^-\gamma$	$1.05 \pm 0.04 \pm 0.12$	$1.29 \pm 0.05 \pm 0.15$
	$E_{\rm T}^{\gamma} > 60 { m ~GeV}$	$E_{\rm T}^{\gamma} > 60 {\rm GeV}$
	exclusive	inclusive
$e u\gamma$	$0.14 \pm 0.02 \pm 0.02$	$0.36 \pm 0.03 \pm 0.03$
$\mu u\gamma$	$0.15 \pm 0.02 \pm 0.02$	$0.41 \pm 0.03 \pm 0.03$
$l u\gamma$	$0.15 \pm 0.01 \pm 0.02$	$0.38 \pm 0.02 \pm 0.03$
$e^+e^-\gamma$	$0.044 \pm 0.010 \pm 0.004$	$0.069 \pm 0.012 \pm 0.006$
$\mu^+\mu^-\gamma$	$0.050\pm0.010\pm0.004$	$0.068 \pm 0.011 \pm 0.005$
$l^+l^-\gamma$	$0.047 \pm 0.007 \pm 0.004$	$0.068 \pm 0.008 \pm 0.005$
	$E_{\rm T}^{\gamma} > 100 { m ~GeV}$	$E_{\rm T}^{\gamma} > 100 { m ~GeV}$
	exclusive	inclusive
$e u\gamma$	$0.040 \pm 0.011 \pm 0.009$	$0.114 \pm 0.018 \pm 0.010$
$\mu u\gamma$	$0.026 \pm 0.008 \pm 0.003$	$0.135 \pm 0.018 \pm 0.010$
$l u \gamma$	$0.030 \pm 0.006 \pm 0.006$	$0.125 \pm 0.013 \pm 0.010$

TABLE V. Measured cross sections for the $pp \rightarrow l\nu\gamma + X$ and $pp \rightarrow ll\gamma + X$ processes at $\sqrt{s} = 7$ TeV in the extended fiducial region defined in Table III. The first uncertainty is statistical and the second is systematic. The 3.7% luminosity uncertainty is not included.

Channel	$E_{\rm T}^{\gamma}$ (GeV)	Cross section	Cross section
		exclusive	inclusive
$pp \to l^{\pm} \nu \gamma$	> 15	$2.84{\pm}0.20~{\rm pb}$	$3.70{\pm}0.28~{\rm pb}$
		$(2.61 \pm 0.16 \text{ pb})$	$(3.58 \pm 0.26 \text{ pb})$
$pp \rightarrow l^{\pm} \nu \gamma$	> 60	134 ± 21 fb	$260{\pm}38~{\rm fb}$
		$(118 \pm 16 \text{ fb})$	$(255 \pm 35 \text{ fb})$
$pp ightarrow l^{\pm} \nu \gamma$	> 100	34 ± 5 fb	$82{\pm}13~{\rm fb}$
		$(31 \pm 4 {\rm fb})$	$(80 \pm 12 \text{ fb})$
$pp \rightarrow l^+ \ l^- \gamma$	> 15	$1.08{\pm}0.04~\rm{pb}$	$1.23{\pm}0.06~{\rm pb}$
		$(1.03 \pm 0.04 \text{ pb})$	$(1.22 \pm 0.05 \text{ pb})$
$pp \rightarrow l^+ \ l^- \gamma$	> 60	43 ± 4 fb	59 ± 5 fb
		$(40\pm3 \text{ fb})$	$(58\pm5 \text{ fb})$

TABLE VI. Expected NLO inclusive and exclusive cross sections for the $pp \rightarrow l^{\pm}\nu\gamma + X$ and $pp \rightarrow l^{+} l^{-}\gamma + X$ processes in the extended fiducial region as defined in Table III. The cross sections are quoted at particle (parton) level as described in the text.

WW Fiducial Cross Sections

Channels	expected σ^{fid} (fb)	measured σ^{fid} (fb)	$\Delta \sigma_{stat}$ (fb)	$\Delta \sigma_{syst}$ (fb)	$\Delta \sigma_{lumi}$ (fb)
evev	44.9 ± 3.7	41.4	± 6.5	\pm 5.7	± 1.6
μνμν	38.0 ± 3.1	48.2	± 4.6	\pm 3.8	± 1.9
evμv	237.4±19.4	284.9	\pm 12.7	\pm 14.1	± 11.1

Table 7: The predicted and measured fiducial W^+W^- production cross sections in the three dilepton channels.

W/Z+Jets Background

⁻ two prompt isolated leptons

g energy

an produce fake or real lepton/ γ

round estimated in data by measuring probability of jet faking lepton/ $\!\gamma$

