Workshop on Electroweak Corrections for LHC Physics Sept 23rd – Sept 26th 2012, IPPP Durham

Inclusive Jet and Dijet Production

Felix Müller Heidelberg University

on behalf of the ATLAS Collaboration

Introduction

- Jet production is the dominant process at the LHC
- Probe pQCD at high p_{T}
 - Hard process: scattering of quarks, gluons described by pQCD \rightarrow proton structure (PDFs)
- Probe non-perturbative effects
 - Underlying event
 - Hadronisation

Outline

- Introduction to ATLAS jet measurement
- Jet production measurements:
 - Inclusive jet and dijet measurement at 7TeV
 - Ratio measurement between cross sections at 2.76 and 7 TeV
- Studies of effect from electroweak effects on jet measurement
 - Size of additional contributions
 - Effect on jet measurements
- Summary

ATLAS jet measurements: Introduction

- Jet algorithm: anti-kt with distance parameter R=0.4, R=0.6 \rightarrow defined at parton / particle / detector level
- Measurement:
 - Same procedure for all measurements here (next slides)
 - Unfolding of data from detector effects (\rightarrow particle level)
- Predictions:
 - NLO pQCD with non-perturbative corrections (→particle level)
 - Compare to different generators, tunes and PDFs

Jet Reconstruction and Energy Calibration

at EM scale

- Input: 3D topological clusters measured at EM scale anti k_r algorithm
- Jet response $(\eta,\,p_{_{T}})$ dependent correction factor for each jet:

 E_{truth}/E_{calo}^{EM}

- *EM* + *JES* scheme simple default Monte Carlo based calibration \rightarrow simple, well understood uncertainty
- Pythia is default Monte Carlo simulation
 - Pythia 6.423, MRST LO* PDF, AMBT1 tune
 - \rightarrow best descriptions of jet properties

ATLAS jet data with proton-proton collisions:

- 2010 at 7TeV L = 37.3 ± 1.3 pb⁻¹
- 2011 at 7TeV $L = 4.8 \pm 0.2 \text{ fb}^{-1}$
- 2011 at 2.76TeV L = 202 ± 6 nb⁻¹

Event selection:

- ≥1 primary vertex
- Single jet trigger for given p_T / rapidity bin (minimum bias at low p_T)
- *EM* + *JES scheme* calibration
- Jet quality selection criteria
 - \rightarrow remove non-collision jets (cosmics, beam background, noise)

Unfolding

- Iterative, dynamically stabilised (IDS) method
- Using Pythia (as for Jet Calibration)

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

 $[p_{T} > 20 \text{ GeV}]$

[extend high p_T]

[ratio measurement]

Experimental uncertainties

Major sources of uncertainty:

- Jet energy scale
- Jet energy resolution
- Trigger efficiency
- Unfolding
- Luminosity [not shown]

	25GeV	100GeV	1TeV
y ~ 0	30%	10%	30%
y ~ 2.5	40%	15%	
y ~ 4	>50%		

Evaluation of systematic uncertainties:

- Determined at detector level
- Propagated through unfolding, taking into account all correlations

Theoretical Predictions

- Fixed-order NLO pQCD calculations
 - NLOJET++ 4.1.2
 - CT10 PDF set
 - Scale choice: $\mu_R = \mu_F = p_T^{\max}$

(different scale for dijets at high y*)

Uncertainties:
 PDF, renormalisation and factorisation scale, α_s

Non-pertubative corrections

- Pythia 6.425 AUET2b
- CTEQ6L1 PDF

$$C = \frac{\sigma_{Had.ON,UE\,ON}}{\sigma_{Had.OFF,UE\,OFF}}$$

 Uncertainties: Envelope of different tunes and parton shower generators

Theoretical uncertainty:

[inclusive jet cross section at 7 TeV]

	25GeV	100GeV	1TeV
y ~ 0	<10%	<5%	~20%
y ~ 2.5	<10%	~5%	~40%
y ~ 4	~10%	>10%	
	scale	scale, α _s , PDF	PDF

Theoretical Predictions (2)

Baseline for theoretical predictions:

• NLO pQCD predictions with non-perturbative corrections

Strategy to assess theoretical predictions

- Different PDF sets
 - Baseline: CT10
 - MSTW 2008, NNPDF 2.1 HERAPDF 1.5
- Modeling of parton showers (and underlying event)
 - → POWHEG with different parton shower generators and tunes: Pythia / AUET2B, Pythia / Perugia 2011, Herwig / AUET2
 - \rightarrow Different distance parameters for anti-k_t of R=0.4 and R=0.6
- Modeling of hard scattering
 → NLOJet++ vs. POWHEG

Inclusive Jet and Dijet Cross Section

 Very good agreement over 9 orders of magnitude

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Very good agreement

Impact of different PDFs

- Good agreement in general, slight deviations in forward region
- Comparison to MSTW 2008, NNPDF 2.1, HERAPDF 1.5
 → MSTW 2008 follows trend best

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Impact of different parton shower models

- POWHEG prediction very similar with NLOJET++ at fixed order
- Difference of ~20% between tunes (AUET2B / Perugia)
- Large difference between parton shower generators (Pythia / Herwig)

Impact of different distance parameters

- 20% difference between R=0.4 and 0.6 at low p_T with respect to NLO pQCD + npc
- Difference between data and POWHEG is very similar between R=0.4 and 0.6

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

1.5

0.5

|y| < 0.3

ATLAS

Dijet Cross Section Measurement at High p_{τ}

Dijets: Impact of Distance Parameters, Tunes and PS

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Jet Cross Section Ratio: 2.76TeV wrt. 7TeV

- Jet cross section measured using the same procedure
- \rightarrow many uncertainties are correlated in the ratio and can be canceled
- \rightarrow precise test of pQCD

Ratio measurement with two binnings

• \mathbf{p}_{T} binning: $R(y, p_{\mathrm{T}}) = \frac{\sigma^{2.76 \text{ TeV}}(y, p_{\mathrm{T}})}{\sigma^{7 \text{ TeV}}(y, p_{\mathrm{T}})}$

$$p_{\tau}^{2.76} = 20 \text{ GeV} \leftrightarrow p_{\tau}^{7.00} = 20 \text{ GeV}$$

- Best cancellation of experimental uncertainties between 2.76 TeV and 7 TeV measurement
- \mathbf{X}_{T} binning: $R(y, x_{\mathrm{T}}) = \left(\frac{2.76 \text{ TeV}}{7 \text{ TeV}}\right)^3 \frac{\sigma^{\sqrt{s}=2.76 \text{ TeV}}(y, x_{\mathrm{T}})}{\sigma^{\sqrt{s}=7 \text{ TeV}}(y, x_{\mathrm{T}})}$ with $x_{\mathrm{T}} = 2p_{\mathrm{T}}/\sqrt{s}$

$$p_{\tau}^{2.76} = 23.7 \text{ GeV} \leftrightarrow p_{\tau}^{7.00} = 60 \text{ GeV}$$

- Many uncertainties still cancel
- More sensitive to deviations from simple parton model due to running of $\boldsymbol{\alpha}_{s}$

Uncertainties on Cross Section Ratio

ratio: x₋ binning $(d\rho/\rho)_{T}^{theo} \sim 1 - 2\%$

ATLAS

2×10²

р_т [GeV]

Preliminary

theory large With reduction × uncertainty binning 0

Experimental uncertainty

perimental large with reduction Þ uncertainty binning 9 ex-

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Cross Section Ratio (x_T Binning)

- Very small theoretical uncertainties
- Good agreement with data
- Statistical uncertainty dominates at high x_{τ}

Cross Section Ratio wrt Theory (p_T Binning)

- Very small experimental uncertainties
 - \rightarrow cancellation of jet energy scale uncertainty
- Slightly different trend at low $\boldsymbol{p}_{\scriptscriptstyle T}$ in the central region

Impact of Distance Parameter

• Very small impact of distance parameter on ratio \rightarrow effects causing the 20% difference for the cross section cancel

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Effect of Electroweak Corrections to Jet Measurements

- Based on studies by M. Campanelli, J. Huston, S. Moretti, D.A. Ross and J. Terron
- Inclusive jet production:
 - Dependence on centre-of-mass energy
 - Decomposition according to initial state partons
 - Dependence on $p_{\scriptscriptstyle T}$ and rapidity
- Dijet production
 - Effects on angular distribution
- Electroweak contributions:

• Corrections may have large impact in jet production at high p_T \rightarrow Especially mixed strong + weak corrections $O(\alpha_s^2 \alpha_w)$

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Mixed strong + weak virtual corrections

Inclusive jet production: centre-of-mass dependence

- Larger effects at 2.76 TeV than 7 TeV for fixed p_{τ} in *pp* collisions
- Small effect at Tevatron in $p\overline{p}$ collisions
- Larger effect in the central region

Decomposition According to Initial State Partons

- qq processes drives the effect
- Varying effect for different centre-of-mass effects due to different fraction of qq

Felix Müller, Jet and Dijet Production, EWC4LHC, Sept 23rd - Sept 26th, IPPP Durham

Jet-Rapidity Dependence

- Largest effect in the central region
- NLO correction decreases in the forward region [although qq fraction increases]

Effect on Inclusive Jet Cross Section Measurement

- Data does not show a strong deviation from NLO predictions
 - Large statistical uncertainty
 - Effect incorporated in PDFs / tunes?

Impact of corrections on dijet angular distributions (1)

Real weak corrections using MCFM:

• W + 2 jets: $O(\alpha_s^2 \alpha_w)$:

• W + 1 jet: $O(\alpha_s \alpha_w)$:

gluon and quark exchange

 \rightarrow qq, qg processes

quark exchange $\rightarrow qg, q\overline{q}$ processes

Impact of corrections on dijet angular distributions (2)

- Real corrections do not cancel the virtual corrections
 - \rightarrow Distortion of angular distributions at low $\chi = \exp(|y_1 y_2|)$
 - \rightarrow Could mask possible contributions from New Physics

Summary

- Jet measurements can probe several aspects of pQCD
- Presented analyses
 - Jet cross section at 7 TeV
 - Ratio of the measurement of 2.76 TeV and 7 TeV
 → very small uncertainties due to cancelation of systematics
- Assess theoretical predictions by varying
 - Parton shower generator
 - Parton shower tunes
 - PDF sets
- Effect of electroweak corrections
 - Effect is sizable at 2.76 TeV and 7 TeV
 - \rightarrow driven by qq fraction
 - \rightarrow corrections become larger at high p_{τ}
 - \rightarrow central region more affected
 - Data does not show large deviations from theoretical predictions w/o electroweak corrections

Backup

Jet Energy Scale Uncertainty

 In-situ tests in agreement with JES uncertainty estimation from MC

- Single hadrons
- Monte Carlo (hadronisation, soft physics, generators, noise, dead material)
- Extension to forward region:
 η intercalibration
- Additional uncertainty from pile-up (not shown)

Scale Choice for Dijets

• Scale for inclusive jet cross section

NLOJET++:
$$\mu = \mu_R = \mu_F = p_T^{max}$$

POWHEG: $\mu = \mu_R = \mu_F = p_T^{Born}$

(leading order)

 Negative cross section in forward region for dijet predictions with NLOJET++

Non-perturbative Corrections for the Ratio

Cross Section Ratio: x_T **Binning (R=0.4)**

Decomposition in forward region at 7 TeV

Jet-Rapidity Dependence at 2.76 TeV

Decomposition at 2.76 TeV

