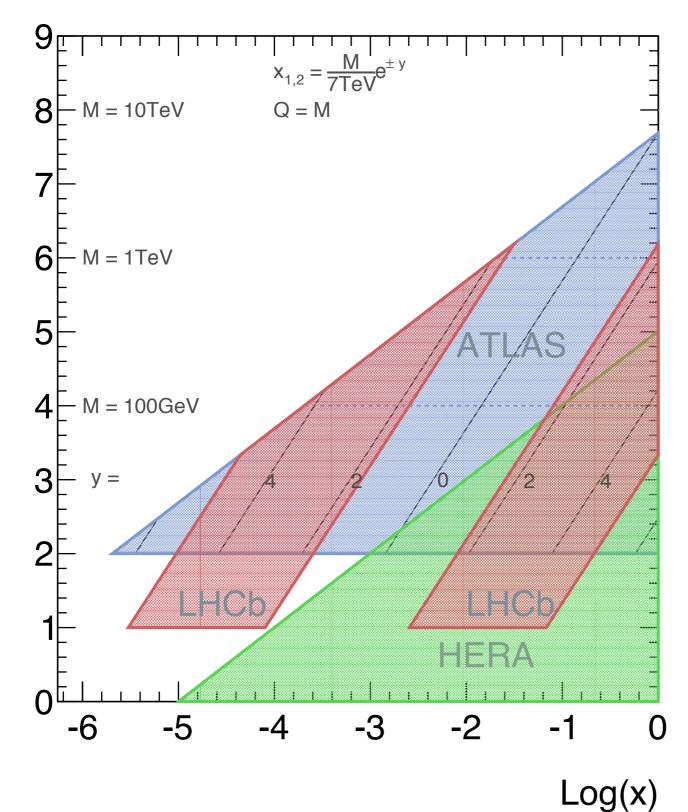

Precision QCD in DIS at HERA

- Introduction
- HERA-II Updates
- H1 NC/CC e[±]p
- H1 NC High y e[±]p
- ZEUS NC e⁺p
- HERAPDF Plans

Eram Rizvi


PDF4LHC IPPP, Durham - 26th Sept. 2012

LHC: largest mass states at large x For central production $x=x_1=x_2$

$$M=x\sqrt{s}$$

i.e. M > I TeV probes x>0.I

Searches for high mass states require precision knowledge at high x

Z' / quantum gravity / susy searches...

DGLAP evolution allows predictions to be made High x predictions rely on

- data (DIS / fixed target)
- sum rules
- behaviour of PDFs as $x \rightarrow I$

Structure Functions

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{x} \left[\frac{1}{Q^{2}}\right]^{2} \left[Y_{+}\tilde{F}_{2} \mp Y_{-}x\tilde{F}_{3} - y^{2}\tilde{F}_{L}\right]$$

$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^{2}} = \frac{G_{F}^{2}}{4\pi x} \left[\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right]^{2} \left[Y_{+} \tilde{W}_{2}^{\pm} \mp Y_{-} x \tilde{W}_{3}^{\pm} - y^{2} \tilde{W}_{L}^{\pm} \right]$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

$$\tilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$$

$$x\tilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$$

$$\tilde{F}_L \propto \alpha_s \cdot xg(x,Q^2)$$

Dominant contribution

Only sensitive at high $Q^2 \sim M_Z^2$

Only sensitive at low Q² and high y

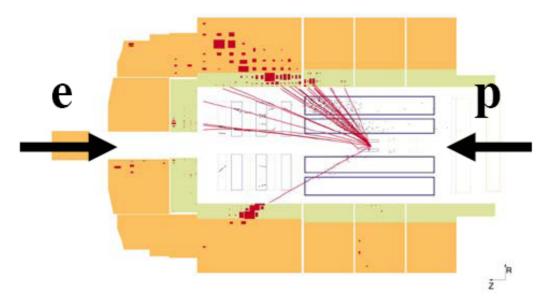
The NC reduced cross section defined as:

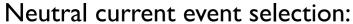
$$\tilde{\sigma}_{NC}^{\pm} = \frac{Q^2 x}{2\alpha\pi^2} \frac{1}{Y_{+}} \frac{d^2 \sigma^{\pm}}{dx dQ^2}$$

$$\tilde{\sigma}_{NC}^{\pm} \sim \tilde{F}_2 \mp \frac{Y_{-}}{Y_{+}} x \tilde{F}_3$$

The CC reduced cross section defined as:

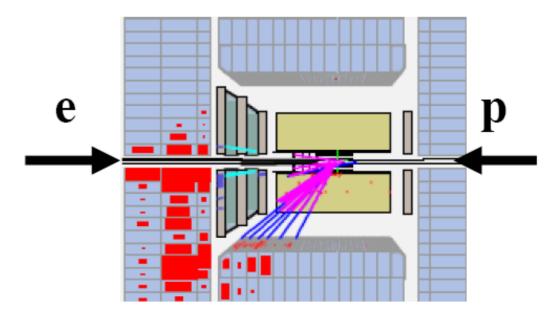
$$\sigma_{CC}^{\pm} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{d\sigma_{CC}^{\pm}}{dx dQ^2}$$


$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^{2}} = \frac{1}{2} \left[Y_{+} W_{2}^{\pm} \mp Y_{-} x W_{3}^{\pm} - y^{2} W_{L}^{\pm} \right]$$


similarly for pure weak CC analogues:

$$W_2^{\pm}$$
, xW_3^{\pm} and W_L^{\pm}

H1 and ZEUS



High P_T isolated scattered lepton Suppress huge photo-production background by imposing longitudinal energy-momentum conservation

Kinematics may be reconstructed in many ways: energy/angle of hadrons & scattered lepton provides excellent tools for sys cross checks

Removal of scattered lepton provides a high stats "pseudo-charged current sample" Excellent tool to cross check CC analysis

Final selection: $\sim 10^5$ events per sample at high Q^2 $\sim 10^7$ events for $10 < Q^2 < 100$ GeV²

Charged current event selection:

Large missing transverse momentum (neutrino)

Suppress huge photo-production background

Topological finders to remove cosmic muons

Kinematics reconstructed from hadrons

Final selection: ~10³ events per sample

HERA Operation

HERA-I operation 1993-2000

Ee = 27.6 GeV

Ep = 820 / 920 GeV

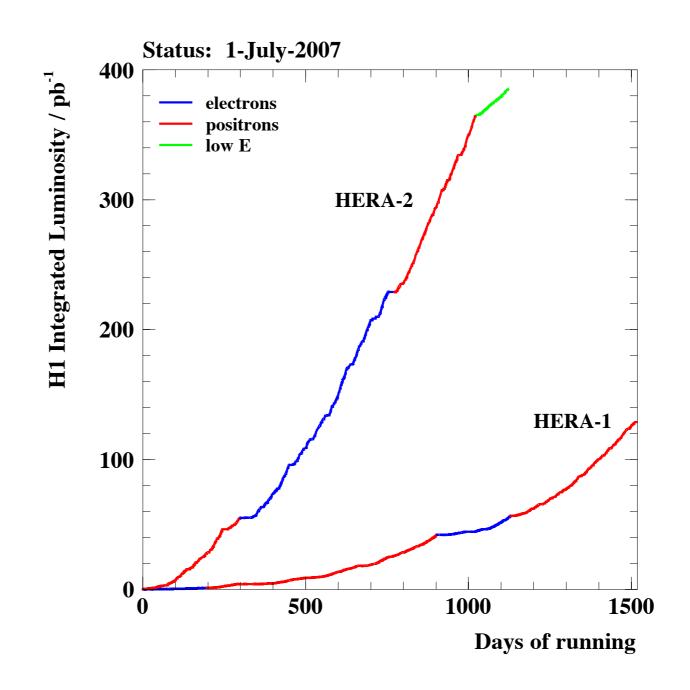
 $\int \mathcal{L} \sim 110 \text{ pb}^{-1} \text{ per experiment}$

HERA-II operation 2003-2007

Ee = 27.6 GeV

Ep = 920 GeV

 $\int \mathcal{L} \sim 330 \text{ pb}^{-1} \text{ per experiment}$


Longitudinally polarised leptons

Low Energy Run 2007

Ee = 27.6 GeV

Ep = 575 & 460 GeV

Dedicated F_L measurement

HERA Structure Function Data

Summary of HERA-I datasets Combined in HERAPDFI.0

Available since 2009

Data Se	et	x Range		Q^2 Range		L	e^+/e^-	\sqrt{S}
				Ge	eV^2	pb^{-1}		GeV
H1 svx-mb	95-00	5×10^{-6}	0.02	0.2	12	2.1	e^+p	301-319
H1 low Q^2	96-00	2×10^{-4}	0.1	12	150	22	e^+p	301-319
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e^-p	319
H1 CC	98-99	0.013	0.40	300	15000	16.4	e^-p	319
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e^-p	319
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319
H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319
ZEUS BPC	95	2×10^{-6}	6×10^{-5}	0.11	0.65	1.65	e^+p	301
ZEUS BPT	97	6×10^{-7}	0.001	0.045	0.65	3.9	e^+p	301
ZEUS SVX	95	1.2×10^{-5}	0.0019	0.6	17	0.2	e^+p	301
ZEUS NC	96-97	6×10^{-5}	0.65	2.7	30000	30.0	e^+p	301
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	301
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e^-p	319
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e^-p	319
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	319
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	319

High Q^2 NC and CC data limited to 100 pb⁻¹ e⁺p 16 pb⁻¹ e⁻p

HERA Structure Function Data

Up till now HERA-II datasets only partially published

ZEUS CC e⁻p	175 pb ⁻¹	EPJ C 61 (2009) 223-235
ZEUS CC e ⁺ p	132 pb ⁻¹	EPJ C 70 (2010) 945-963
ZEUS NC e ⁻ p	170 pb ⁻¹	EPJ C 62 (2009) 625-658
ZEUS NC e ⁺ p	135 pb ⁻¹	ZEUS-prel-11-003
HI CC e⁻p	149 pb ⁻¹	HIprelim-09-043
HI CC e⁺p	180 pb ⁻¹	HIprelim-09-043
HI NC e⁻p	149 pb ⁻¹	H1prelim-09-042
HI NC e ⁺ p	180 pb ⁻¹	H1prelim-09-042

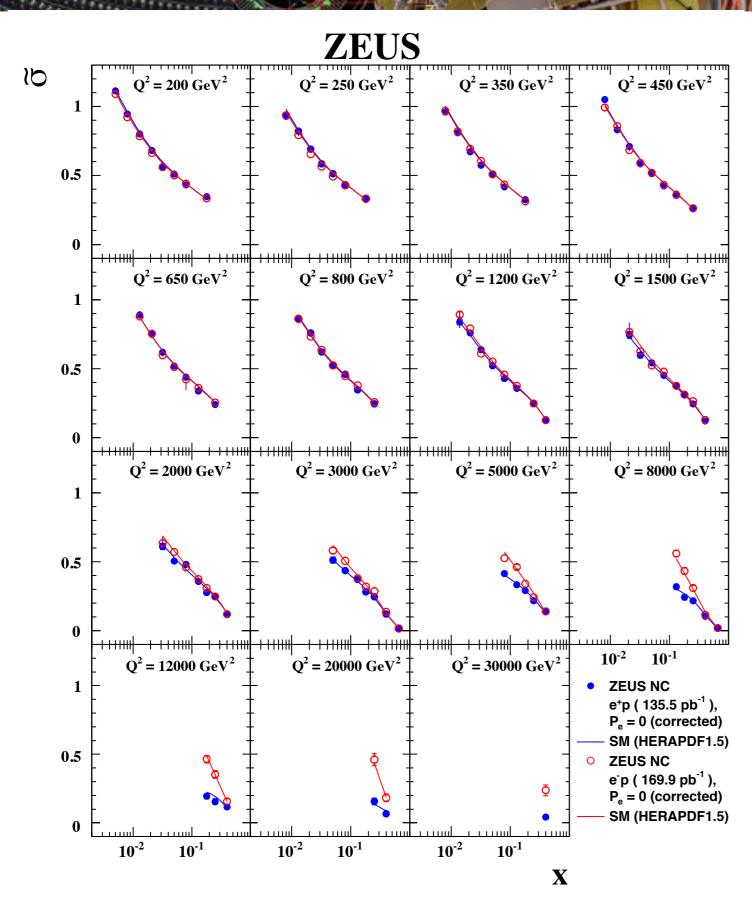
ZEUS CC e⁻p	175 pb ⁻¹	EPJ C 61 (2009) 223-235
ZEUS CC e ⁺ p	132 pb ⁻¹	EPJ C 70 (2010) 945-963
ZEUS NC e⁻p	170 pb ⁻¹	EPJ C 62 (2009) 625-658
ZEUS NC e ⁺ p	135 pb ⁻¹	arXiv:1208.6138
HI CC e⁻p	149 pb ⁻¹	
HI CC e ⁺ p	180 pb ⁻¹	arXiv:1206.7007
HI NC e⁻p	149 pb ⁻¹	arAiv:1206./00/
HI NC e⁺p	180 pb ⁻¹	

HERA-II datasets
Combined in HERAPDF1.5
(except ZEUS NC e⁺p)

breakdown of HERA-II data samples

		_
	R	L
	$\mathcal{L} = 47.3 \mathrm{pb}^{-1}$	$\mathcal{L} = 104.4 \mathrm{pb}^{-1}$
e^-p	$P_e = (+36.0 \pm 1.0)\%$	$P_e = (-25.8 \pm 0.7)\%$
(+ m	$\mathcal{L} = 101.3 \mathrm{pb}^{-1}$	$\mathcal{L} = 80.7 \mathrm{pb}^{-1}$
e^+p	$P_e = (+32.5 \pm 0.7)\%$	$P_e = (-37.0 \pm 0.7)\%$

Complete the analyses of HERA high Q² inclusive structure function data

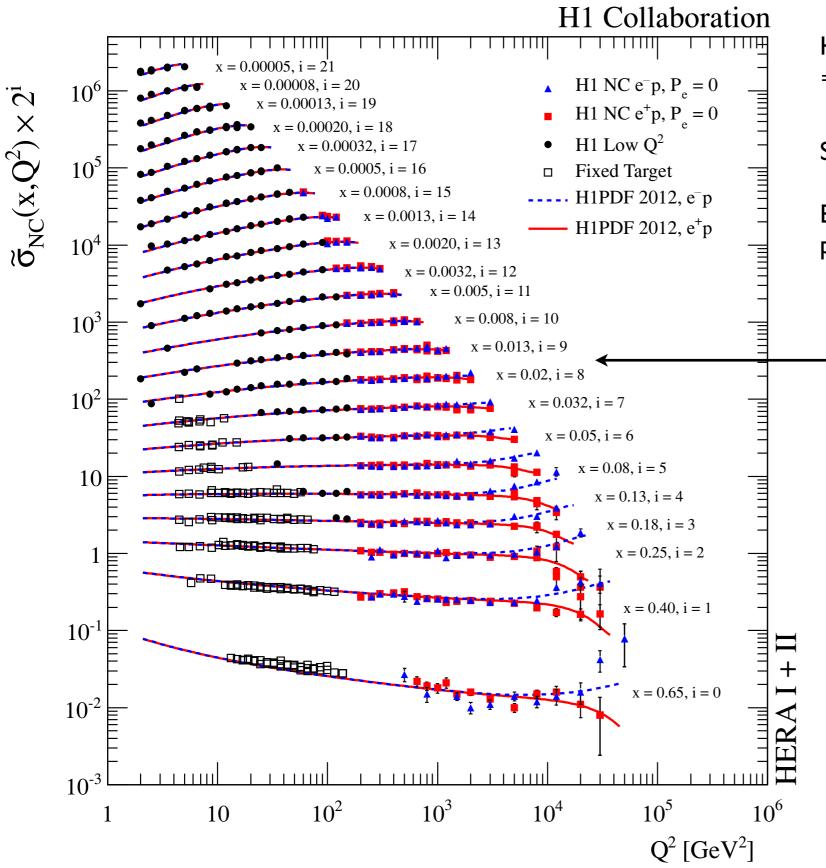

New published data increase $\int \mathcal{L}$ by

- ~ factor 3 for e^+p
- ~ factor 10 for e⁻p

much improved systematic uncertainties

High Q² NC Cross Sections

High Q² is the EW physics regime


Final measurement of ZEUS NC e⁺p data

Shown here for P=0 Polarised measurements also available

Compared to published NC e⁻p data

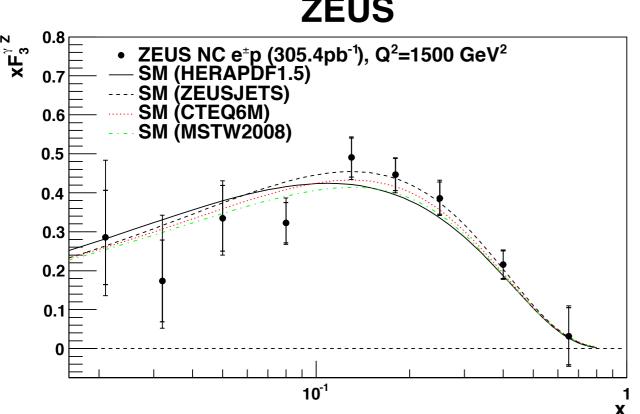
High Q² NC Cross Sections

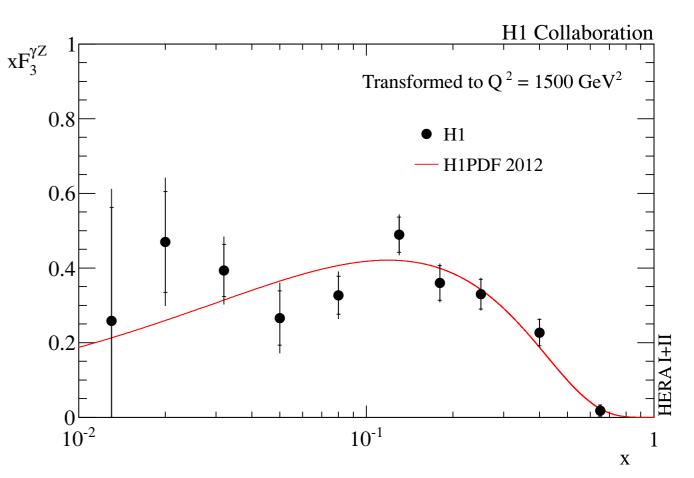
H1 precision I.5% for $Q^2 < 500 \text{ GeV}^2$ \Rightarrow factor 2 reduction in error wrt HERA-I

Statistics limited at higher Q^2 and high x

Extended reach at high x compared to H1 preliminary data

This x region is the 'sweet spot'
High precision with long Q² lever arm
x-range relevant for Higgs production


Combination of high Q² data HERA-I and HERA-II

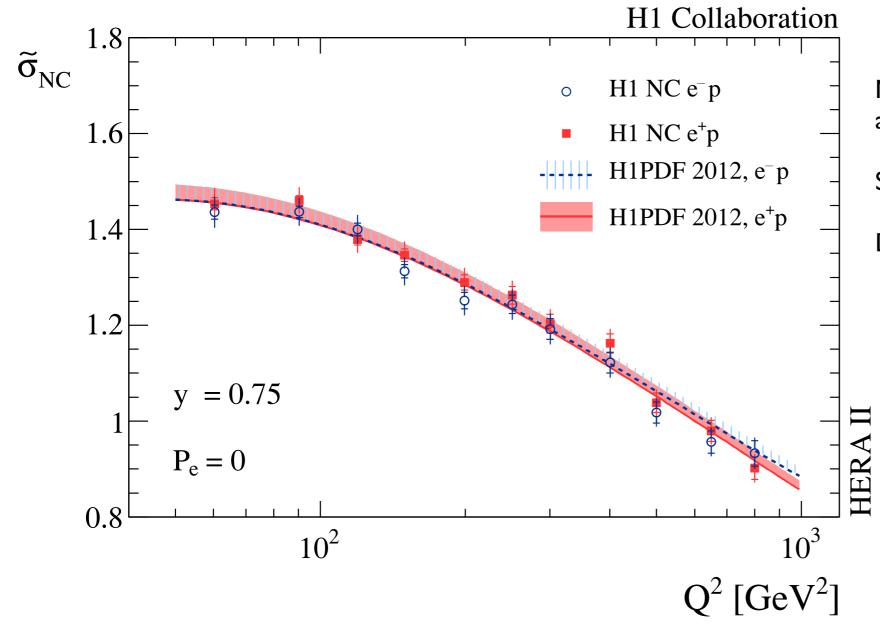

Larger HERA-II luminosity

 \rightarrow improved precision at high x / Q²

At high $Q^2 \times F_3$ arises due to Z^0 effects enhanced e- cross section wrt e+ Difference is xF₃ Sensitive to valence PDFs

$$x\tilde{F}_3 = \frac{Y_+}{2Y}(\tilde{\sigma}_{NC}^- - \tilde{\sigma}_{NC}^+) \approx a_e \chi_Z x F_3^{\gamma Z}$$

$$x\tilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$$


H1 measure integral of xF_3^{YZ} - validate sumrule:

$$\int_{0.016}^{0.725} dx \ F_3^{\gamma Z}(x, Q^2 = 1500 \,\text{GeV}^2) = 1.22 \pm 0.09 (\text{stat}) \pm 0.07 (\text{syst})$$

LO integral predicted to be $5/3 + \mathcal{O}(\alpha_S/\pi)$

NC Cross Sections at High y

Measurement extension to high y at high Q^2

Sensitive to F_L and xg

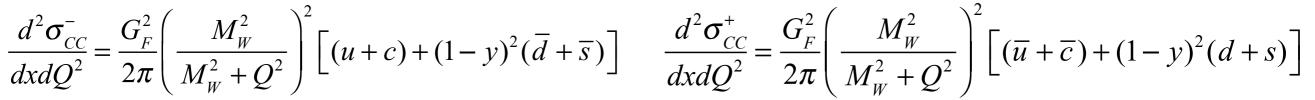
Difficult measurement:

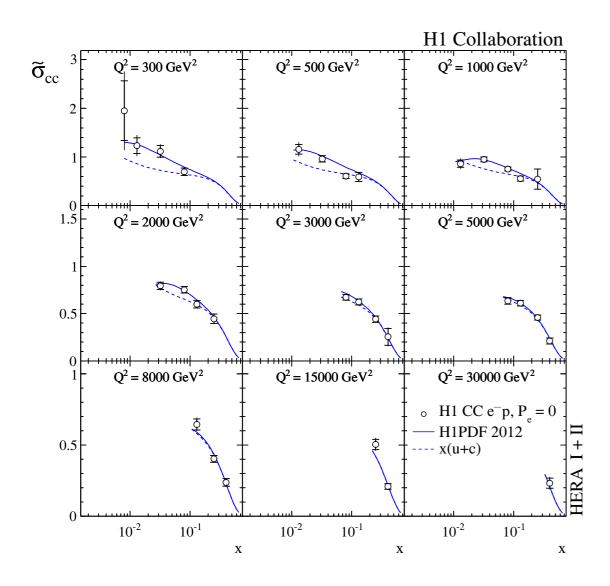
- low scattered electron energy E_e'>5 GeV
- large photoproduction background

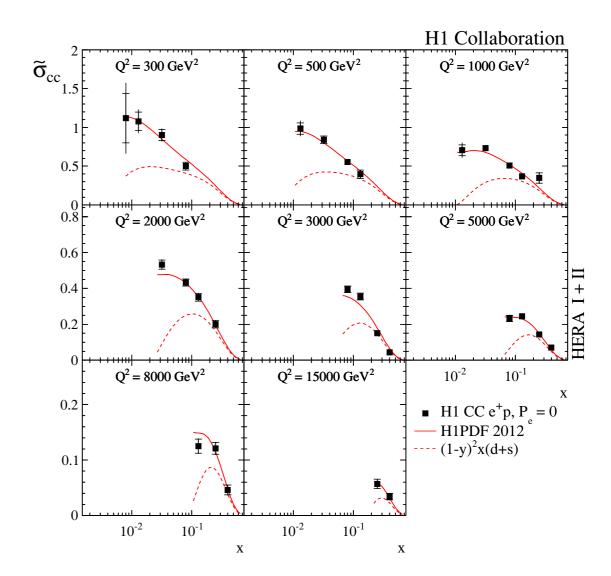
Total uncertainty reduced by factor 2:

HERA-I ~4%

HERA-II ~2%

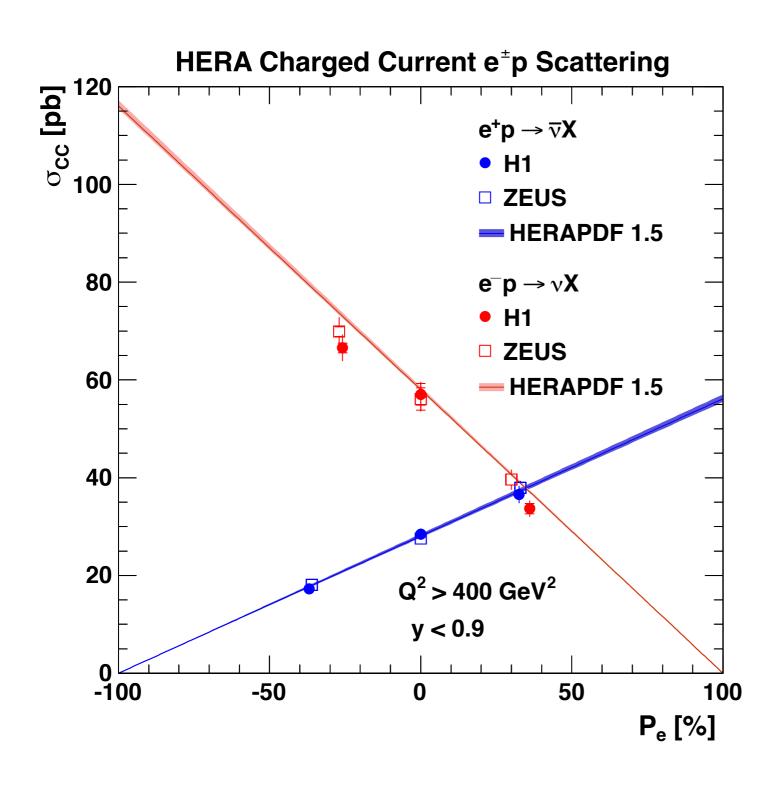

High Q² CC Cross Sections




Electron scattering

Positron scattering

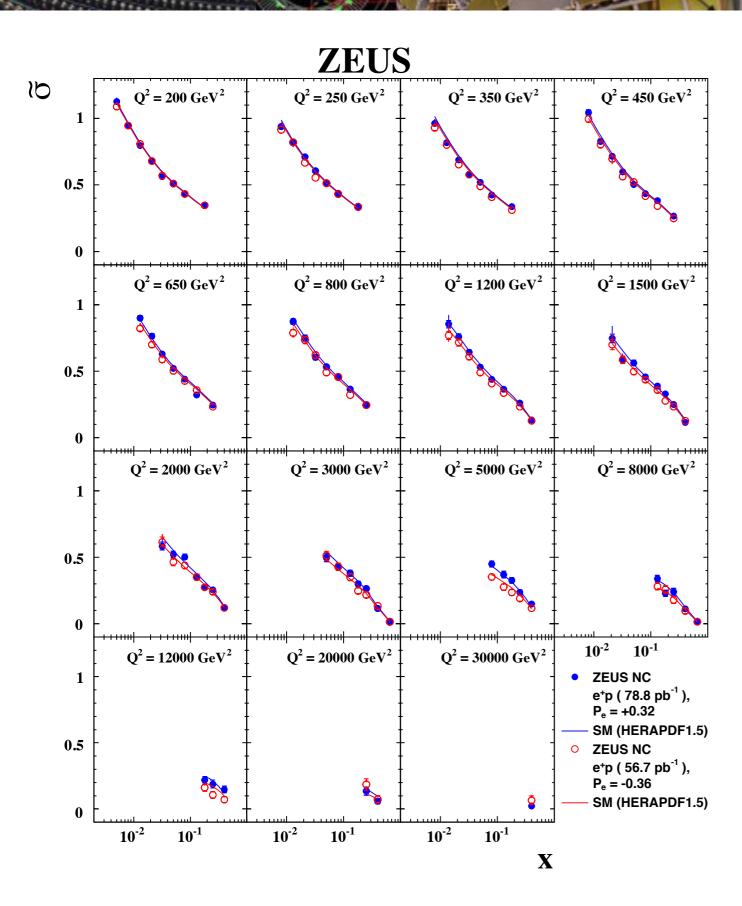
$$\frac{d^2 \sigma_{CC}^{-}}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(u+c) + (1-y)^2 (\overline{d} + \overline{s}) \right]$$



H1 combination of high Q2 CC data (HERA-I+II) Improvement of total uncertainty Dominated by statistical errors Provide important flavour decomposition information

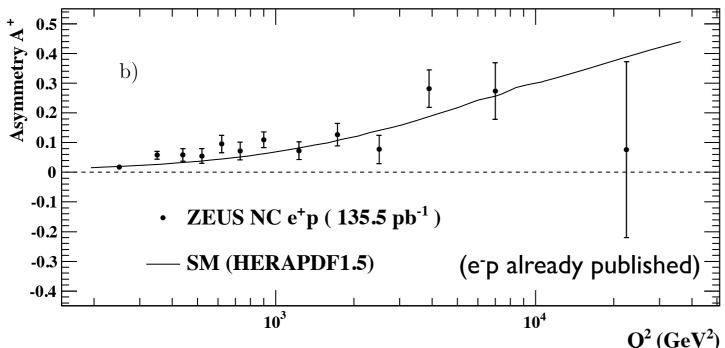
CC e+ data provide strong d_v constraint at high x Precision limited by statistics: typically 5-10% HERA-I precision of 10-15% for e+p Large gain to come after combination with ZEUS

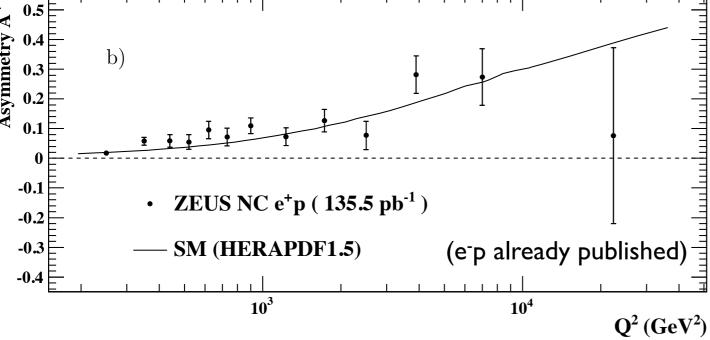
CC Polarisation Dependence

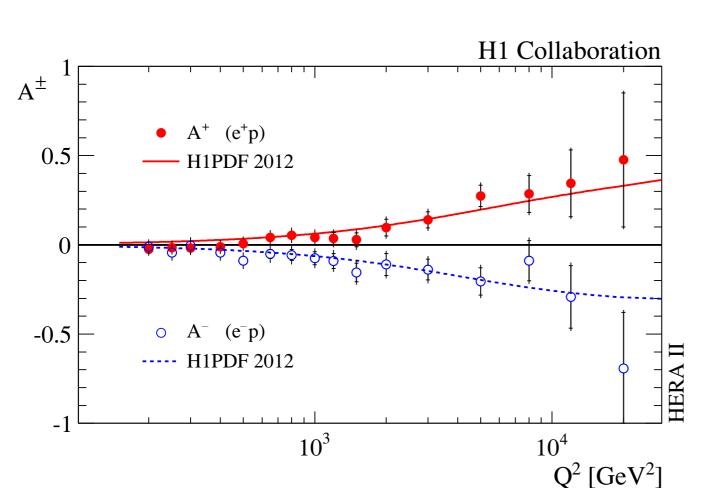


Polarisation dependence of CC cross section now final from H1 and ZEUS

Polarised NC Cross Sections



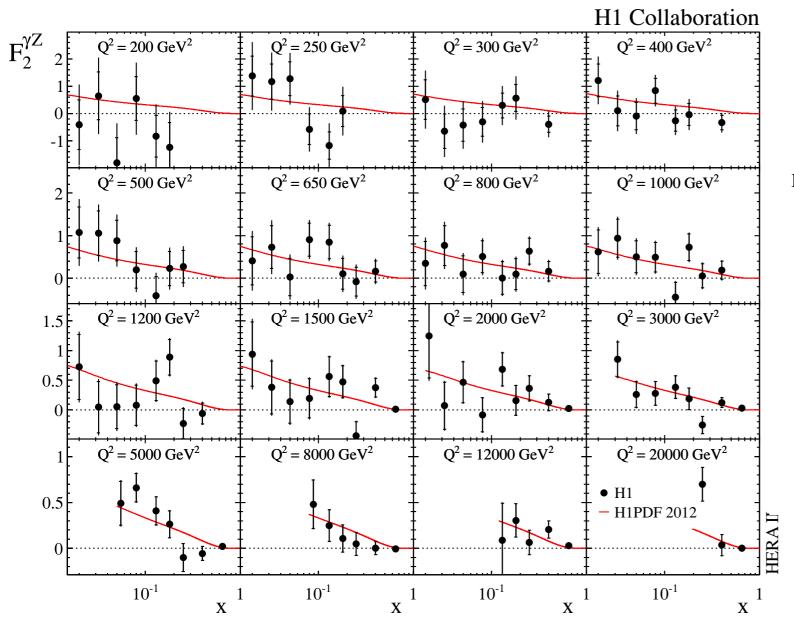

Polarised NC measurements completed for e⁺p , e⁻p , L-handed , R-handed scattering

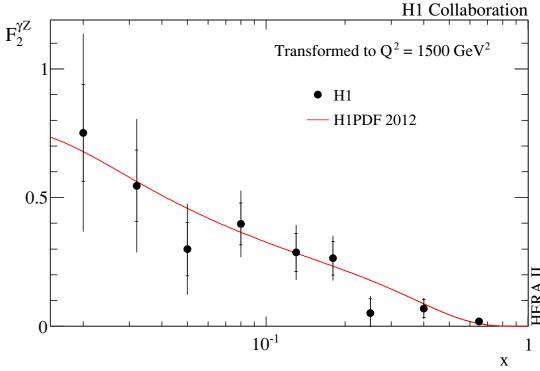

Difference in L,R scattering visible at high Q²

NC Polarisation Asymmetry

NC polarisation asymmetry:

$$A^{\pm} = \frac{2}{P_L^{\pm} - P_R^{\pm}} \cdot \frac{\sigma^{\pm}(P_L^{\pm}) - \sigma^{\pm}(P_R^{\pm})}{\sigma^{\pm}(P_L^{\pm}) + \sigma^{\pm}(P_R^{\pm})}$$


At large x
$$A^{\pm} \propto \pm \kappa \frac{1+d_v/u_v}{4+d_v/u_v}$$



Measuring the difference in NC polarised cross sections gives access to new structure functions:

$$\frac{\sigma^{\pm}(P_L^{\pm}) - \sigma^{\pm}(P_R^{\pm})}{P_L^{\pm} - P_R^{\pm}} = \frac{\kappa Q^2}{Q^2 + M_Z^2} \left[\mp a_e F_2^{\gamma Z} + \frac{Y_-}{Y_+} v_e x F_3^{\gamma Z} - \frac{Y_-}{Y_+} \frac{\kappa Q^2}{Q^2 + M_Z^2} (v_e^2 + a_e^2) x F_3^Z \right]$$

xF₃ terms eliminated by subtracted e⁻p from e⁺p

Combined H1 Data

New H1 data are combined with all previously published H1 inclusive cross section measurements

854 data points averaged to 413 measurements $\chi^2/\text{ndf} = 412/441 = 0.93$

Normalisation shifts for H1 data after averaging

Source	Shift in units of standard deviation	Shift in % of cross section
$\delta^{\mathcal{L}1}$ (BH Theory)	-0.39	-0.19
$\delta^{\mathcal{L}2} \ (e^+ \ 94-97)$	-0.46	-0.66
$\delta^{\mathcal{L}3} \ (e^- \ 98-99)$	-0.69	-1.20
$\delta^{\mathcal{L}4} \ (e^+ \ 99\text{-}00)$	-0.07	-0.10
$\delta^{\mathcal{L}5}$ (QEDC)	0.81	1.70
$\delta^{\mathcal{L}6}, \delta^{\mathcal{L}7} (e^+L + R)$	0.84	0.80
$\delta^{\mathcal{L}8}, \delta^{\mathcal{L}9} (e^-L + R)$	0.84	0.89

Precision medium Q²
HERA-I data ~unshifted

New high Q^2 HERA-II data shifted by ~1.7% (less than I std.dev)

New PDF fit performed: can be thought of as a 'stepping-stone' towards HERAPDF2.0

$$xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25} ,$$

$$xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) ,$$

$$xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} ,$$

$$x\overline{U}(x) = A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} ,$$

$$x\overline{D}(x) = A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} .$$

Parameter	Central Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
$m_c (\mathrm{GeV})$	1.4	1.35 (for $Q_0^2 = 1.8 \text{GeV}$)	1.65
$m_b ({\rm GeV})$	4.75	4.3	5.0
$Q_{\min}^2 (\mathrm{GeV}^2)$	3.5	2.5	5.0
$Q_0^2 (\mathrm{GeV}^2)$	1.9	$1.5 (f_s = 0.29)$	$2.5 (m_c = 1.6, f_s = 0.34)$

13 parameter fit: additional flexibility given to u_v and d_v compared to HIPDF2009 / HERAPDF1.0

Apply momentum/counting sum rules:

$$\int_{0}^{1} dx \cdot (xu_{v} + xd_{v} + x\overline{U} + x\overline{D} + xg) = 1$$

$$\int_{0}^{1} dx \cdot u_{v} = 2 \qquad \int_{0}^{1} dx \cdot d_{v} = 1$$

Parameter constraints:

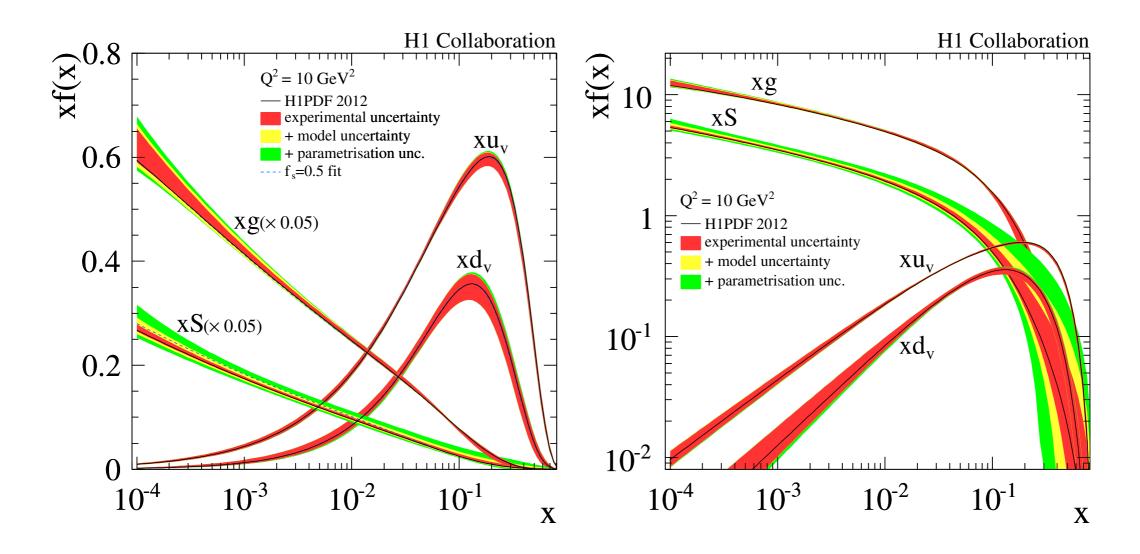
$$B_{Ubar} = B_{Dbar}$$

 $sea = 2 \times (Ubar + Dbar)$
 $Ubar = Dbar \text{ at } x=0$
 $f_s = sbar/Dbar$

$$Q_0^2$$
 = I.9 GeV² (below m_c)

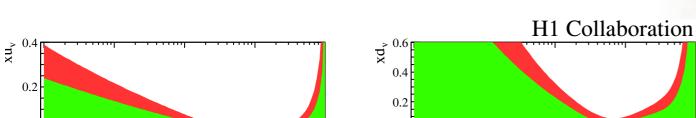
$$Q^2 > 3.5 \text{ GeV}^2$$

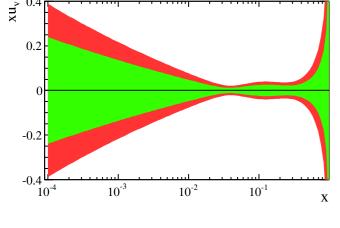
$$2 \times 10^{-4} < x < 0.65$$

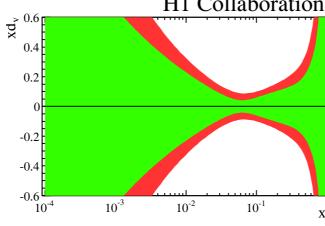

Fits performed using RT-VFNS

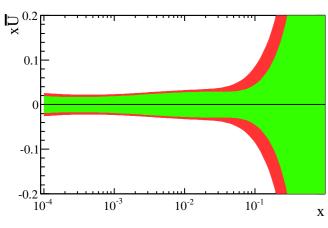
Experimental uncertainties produced using RMS spread of 400 replica fits Parameterisation uncertainty determined from envelope of 14 parameter fit & Q_0^2 variations Error band is applied to central value fit \Rightarrow asymmetric errors since mean of replicas \neq central fit

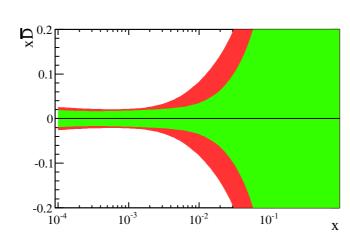
$$\chi^{2} = \sum_{i} \frac{\left[\mu_{i} - m_{i} \left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i,\text{unc}}^{2} m_{i}^{2} + \delta_{i,\text{stat}}^{2} \mu_{i} m_{i} \left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i,\text{unc}}^{2} m_{i}^{2} + \delta_{i,\text{stat}}^{2} \mu_{i} m_{i}}{\delta_{i,\text{unc}}^{2} \mu_{i}^{2} + \delta_{i,\text{stat}}^{2} \mu_{i}^{2}}$$

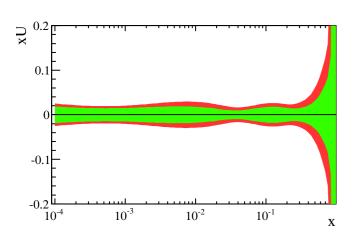

modified χ^2 definition includes In term to account for likelihood transition to χ^2 after error scaling

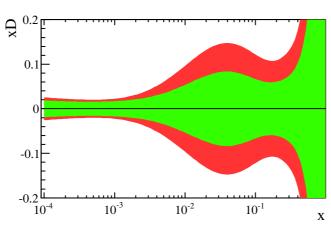


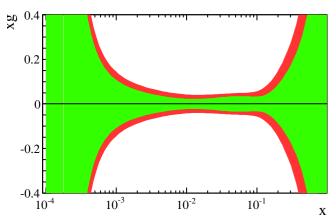

$$\chi^2$$
/ndf = 1570/1461 = 1.07

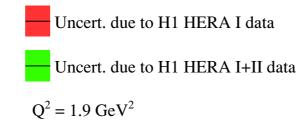

Fit with unsuppressed strange sea $(f_s=0.5)$ is well within error bands











Comparison of PDF uncertainties from HI fits with and without new HERA-II data

Large improvement in xd_v and xD over wide x range - driven by more precise CC e^+p data

Improvement in xu_v from NC at high x. Error reduction at low x arises from sum rules

High x gluon is also improved from scaling violations

Eram Rizvi

PDF4LHC - IPPP, Durham - Sept. 2012

Compendium for HERAPDF

HERAPDFI.0

Combine NC and CC HERA-I data from HI & ZEUS

Complete MSbar NLO fit

NLO: standard parameterisation with 10 parameters

 $\alpha_s = 0.1176$ (fixed in fit)

HERAPDFI.5

Include additional NC and CC HERA-II data

Complete MSbar NLO and NNLO fit

NLO: standard parameterisation with 10 parameters

HERAPDF1.5f

NNLO: extended fit with 14 parameters

HERAPDFI.6

Include additional NC inclusive jet data $5 < Q^2 < 15000$

Complete MSbar NLO fit

NLO: standard parameterisation with 14 parameters

 $\alpha_s = 0.1202 \pm 0.0013$ (exp) ± 0.004 (scales) free in fit

HERAPDFI.7

Include 41 additional F_2^{cc} data 4 < Q^2 < 1000

Include 224 combined cross section points E_p=575/460 GeV

Complete MSbar NLO fit

NLO: standard parameterisation with 14 parameters

HERAPDF2.0

Include final:

HERA-I low/medium Q² precision F₂

HERA-II high Q² polarised NC/CC data

HERA-II low/medium energy NC data

HERA-I+II F2cc combined data - almost ready

HERA-I+II multijet data - awaiting H1 publication

Combined F_2^{cc} now at 2^{nd} stage of internal review

Expect journal submission ~ early Nov.

Final structure function measurements from H1 / ZEUS now published

Combination of the data is underway

New combination will include:

HERA-I published data

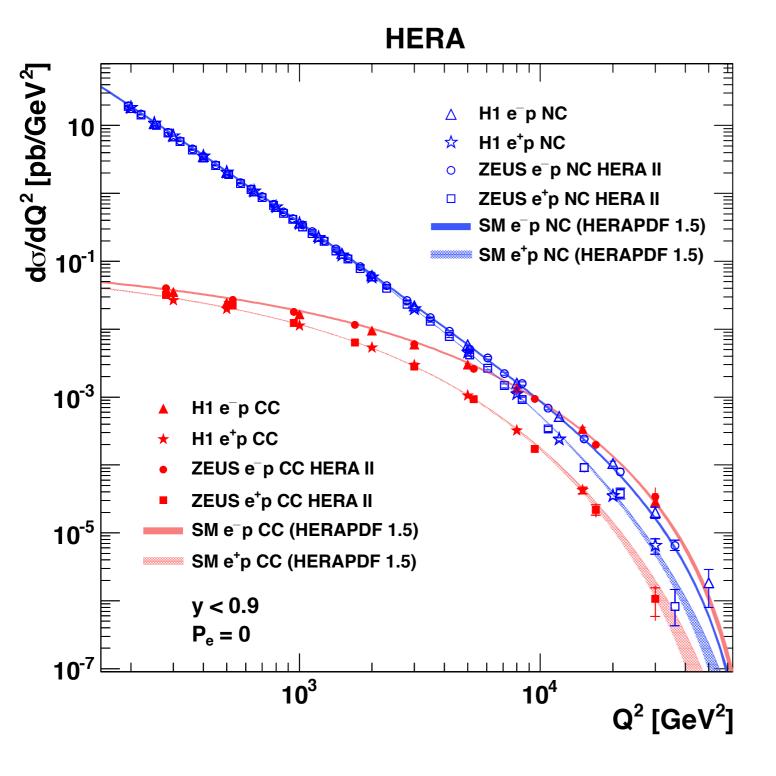
HERA-II published data

low/medium energy E_p=575/460 GeV run data

Expect several fits:

NLO vs NNLO

NLO will be: inclusive NC/CC data & inclusive + F_2^{cc} (+ jets?)


Include fit to α_s

MC method for experimental errors will be used

Timescale ~ spring 2013 (DIS workshop?)

Conclusions

- H1 / ZEUS completed their final SF measurements
- New HERA-II data provide tighter constraints at high \times / Q^2
- These data provide some of the most stringent constraints on PDFs
- Stress-test of QCD over 4 orders of mag. in Q²
- DGLAP evolution works very well
- HERA data provide a self-consistent data set for complete flavour decomposition of the proton
- New combination of HERA data underway
- Combination ⇒ HERAPDF2.0 QCD fit

H1 Systematic Error Source Correlation

Data set		$\delta^{\mathcal{L}}$	δ^E	δ^{θ}	δ^h	δ^N	δ^B	δ^V	δ^S	$\delta^{ m pol}$
e^+ Combined low Q^2	$\delta^{\mathcal{L}1}$									
e^+ Combined low E_p	$\delta^{\mathcal{L}1}$									
e ⁺ NC 94-97	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}2}$	δ^{E1}	$\delta^{\theta 1}$	δ^{h1}	δ^{N1}	δ^{B1}	_	_	_
e^{+} CC 94-97	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}2}$	_	_	δ^{h1}	δ^{N1}	δ^{B1}	δ^{V1}	_	_
e^{-} NC 98-99	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}3}$	δ^{E1}	$\delta^{\theta 2}$	δ^{h1}	δ^{N1}	δ^{B1}	_	_	_
e^- NC 98-99 high y	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}3}$	δ^{E1}	$\delta^{\theta 2}$	δ^{h1}	δ^{N1}	_	_	δ^{S1}	_
e^{-} CC 98-99	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}3}$	_	_	δ^{h1}	δ^{N1}	δ^{B1}	δ^{V2}	_	_
e^{+} NC 99-00	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}4}$	δ^{E1}	$\delta^{\theta 2}$	δ^{h1}	δ^{N1}	δ^{B1}	_	δ^{S1}	_
e^{+} CC 99-00	$\delta^{\mathcal{L}1}$	$\delta^{\mathcal{L}4}$	_	_	δ^{h1}	δ^{N1}	δ^{B1}	δ^{V2}	_	_
e^+ NC high y	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}6}, \delta^{\mathcal{L}7}$	δ^{E2}	$\delta^{\theta 3}$	δ^{h2}	δ^{N2}	_	_	δ^{S2}	_
e^- NC high y	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}8}, \delta^{\mathcal{L}9}$	δ^{E2}	$\delta^{\theta 3}$	δ^{h2}	δ^{N2}	_	_	δ^{S2}	_
e^+ NC L	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}6}$	δ^{E2}	$\delta^{\theta 3}$	δ^{h2}	δ^{N2}	δ^{B1}	_	_	δ^{P1}
e^+ CC L	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}6}$	_	_	δ^{h2}	δ^{N3}	δ^{B1}	δ^{V3}	_	δ^{P1}
e^+ NC R	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}7}$	δ^{E2}	$\delta^{\theta 3}$	δ^{h2}	δ^{N2}	δ^{B1}	_	_	δ^{P2}
e^+ CC R	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}7}$	_	_	δ^{h2}	δ^{N3}	δ^{B1}	δ^{V3}	_	δ^{P2}
e^- NC L	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}8}$	δ^{E2}	$\delta^{\theta 3}$	δ^{h2}	δ^{N2}	δ^{B1}	_	_	δ^{P3}
$e^- \operatorname{CC} L$	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}8}$	_	_	δ^{h2}	δ^{N3}	δ^{B1}	δ^{V3}	_	δ^{P3}
e^- NC R	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}9}$	δ^{E2}	$\delta^{\theta 3}$	δ^{h2}	δ^{N2}	δ^{B1}	_	_	δ^{P4}
$e^- \operatorname{CC} R$	$\delta^{\mathcal{L}5}$	$\delta^{\mathcal{L}9}$	_	_	δ^{h2}	δ^{N3}	δ^{B1}	δ^{V3}	_	δ^{P4}

correlation of HI systematic error sources

 $\delta^{\mathcal{L}_{\text{I}}} \rightarrow$ 0.5% BH theoretical error HERA-I

 $\delta^{\text{L5}} \rightarrow 2.3\%$ Compton lumi error HERA-II

 $\delta^{\text{$\it L}6-9}$ \rightarrow I.5% Compton unc. error HERA-II

Data Period	Global	Per Period	Total
	Normalisation	Normalisation	Normalisation
e^+ Combined low Q^2	0.993	_	0.993
e^+ Combined low E_p	0.993	_	0.993
HERA I e^+ 94-97	0.993	0.999	0.992
HERA I e^- 98-99	0.993	1.003	0.996
HERA I e^+ 99-00	0.993	1.005	0.998
HERA II e^+ L	1.029	0.991	1.020
HERA II $e^+ R$	1.029	1.013	1.042
HERA II $e^- L$	1.029	1.010	1.039
HERA II $e^- R$	1.029	1.014	1.043

normalisations from HIPDF 2012

Low Q² data shifted by -0.7% HERA-I high Q² by -0.3% HERA-II high Q² by +2 to +4%

All shifts are <1.3 std.devs

HERAPDF

HERAPDFI.0

Combine NC and CC HERA-I data from HI & ZEUS Complete MSbar NLO fit

NLO: standard parameterisation with 10 parameters $\alpha_s = 0.1176$ (fixed in fit)

desy-09-158

HERAPDFI.5

Include additional NC and CC HERA-II data
Complete MSbar NLO and NNLO fit

NLO: standard parameterisation with 10 parameters

HERAPDFI.5f

NNLO: extended fit with 14 parameters

HI-10-142 / ZEUS-prel-10-018

$$xf(x,Q_0^2) = A \cdot x^B \cdot (1-x)^C \cdot (1+Dx+Ex^2)$$

$$xg \qquad xg \qquad xg(x) = A_g x^{B_g} (1-x)^{C_g},$$

$$xu_v \qquad xU = xu + xc \qquad xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + E_{u_v} x^2\right),$$

$$xd_v \qquad xD = xd + xs \qquad xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}},$$

$$x\bar{U} \qquad x\bar{U} = x\bar{u} + x\bar{c} \qquad x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}},$$

$$x\bar{D} = x\bar{d} + x\bar{s} \qquad x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}.$$

 $x\overline{s}=f_s x\overline{D}$ strange sea is a fixed fraction f_s of \overline{D} at $Q_0{}^2$

Apply momentum/counting sum rules:

$$\int_{0}^{1} dx \cdot (xu_{v} + xd_{v} + x\overline{U} + x\overline{D} + xg) = 1$$

$$\int_{0}^{1} dx \cdot u_{v} = 2 \qquad \int_{0}^{1} dx \cdot d_{v} = 1$$

Parameter constraints:

$$B_{uv} = B_{dv}$$

 $B_{Ubar} = B_{Dbar}$
 $sea = 2 \times (Ubar + Dbar)$
 $Ubar = Dbar at x=0$

 $Q_0^2 = 1.9 \text{ GeV}^2 \text{ (below } m_c \text{)}$ $Q^2 > 3.5 \text{ GeV}^2$ $2 \times 10^{-4} < x < 0.65$ Fits performed using RT-VFNS

QCD Analysis

HERAPDFI.0 central values:

	A	В	C	E
xg	6.8	0.22	9.0	
xu_v	3.7	0.67	4.7	9.7
xd_v	2.2	0.67	4.3	
$x\bar{U}$	0.113	-0.165	2.6	
$x\bar{D}$	0.163	-0.165	2.4	

$$\chi^2$$
/ndf = 574/582

Experimental systematic sources of uncertainty allowed to float in fit Include model assumptions into uncertainty:

$$f_s$$
 , m_c , m_b , Q^2 ₀, Q^2 _{min}

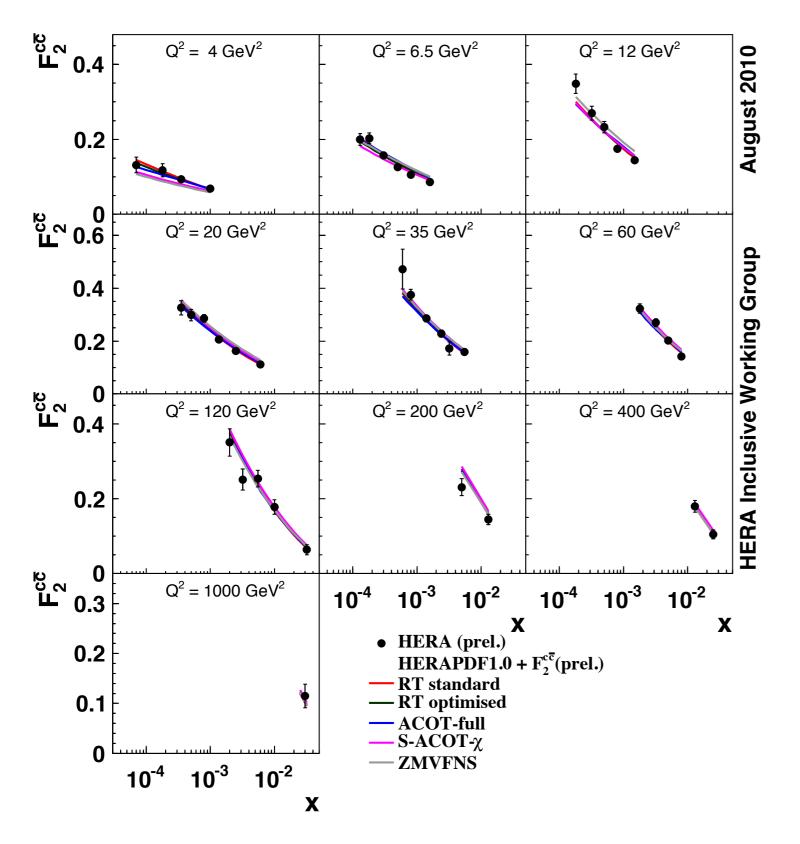
Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	$1.35^{(a)}$	1.65
m_b [GeV]	4.75	4.3	5.0
Q_{min}^2 [GeV ²]	3.5	2.5	5.0
Q_0^2 [GeV ²]	1.9	$1.5^{(b)}$	$2.5^{(c,d)}$

$$^{(a)}Q_0^2 = 1.8$$
 $^{(c)}m_c = 1.6$ $^{(b)}f_s = 0.29$ $^{(d)}f_s = 0.34$

Excellent consistency of input data allow standard statistical error definition:

$$\Delta \chi^2 = 1$$

Exclusive jet data required for free α_s fit See talk of Krzysztof Nowak


In 14 parameter fit: release $B_{uv} = B_{dv}$ constraint allow more flexible gluon

$$xg(x,Q_0^2) = A \cdot x^B \cdot (1-x)^C - A' \cdot x^{B'} \cdot (1-x)^{25}$$

allows for valence-like or negative gluon at Qo^2

Charm Content of the Proton

The inclusive charm content of proton can be measured in several methods:

D* decays , impact parameter significance...

Combination yields ~5-10% precision

Data cover wide phase space region including charm threshold region

Theory predictions have small spread \Rightarrow use optimised m_c parameter

Spread of LHC Z/W production predictions is reduced $\sim 4.5\% \rightarrow \sim 0.7\%$ when using optimal value of m_c

DIS Jet Cross Sections

			10 ⁻⁴ 10 ⁻³ 10 ⁻²
ZEUS inclusive jets	39 pb ⁻¹	$Q^2 > 125$	Nucl. Phys. B765 (2007) 1-30
ZEUS inclusive jets	82 pb ⁻¹	$Q^2 > 125$	Phys. Lett. B649 (2007) 12
HI inclusive jets	395 pb ⁻¹	$150 < Q^2 < 15000$	EPJ C65 (2010) 363-383
HI inclusive jets	44 pb ⁻¹	$5 < Q^2 < 100$	EPJ C67 (2010) 1-24

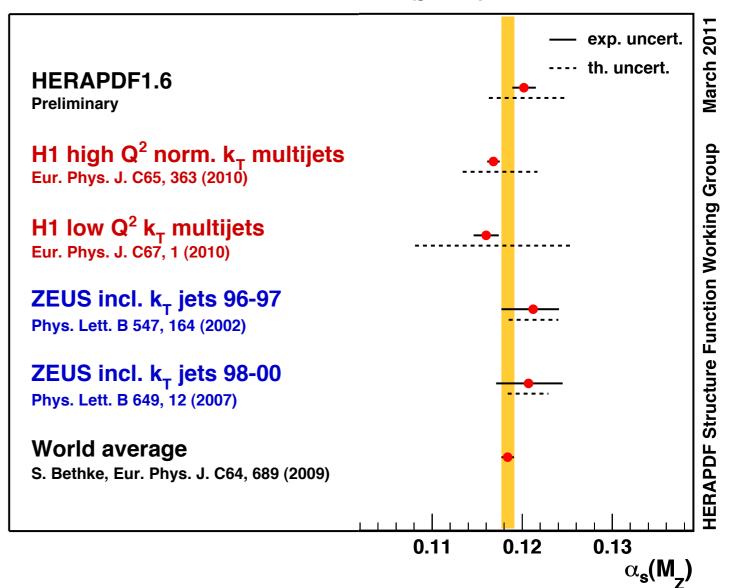
 $xg (\times 0.05)$

 $xS (\times 0.05)$

Jet data bring significant sensitivity to α_S Disentangles correlation between $xg(x,Q^2)$ and α_S

HERAPDFI.6: Simultaneous NLO QCD fit to

- combined NC inclusive cross section data
- combined CC inclusive cross sections data
- normalised H1/ZEUS inclusive jet data


$$\alpha_S(M_Z) = 0.1202 \pm 0.0013 \text{ (exp)}$$

$$\pm 0.0007 \text{ (model)}$$

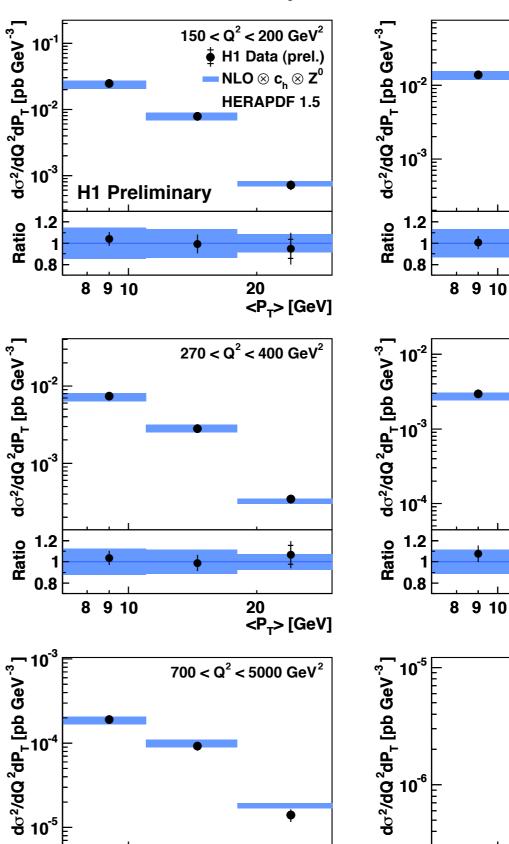
$$\pm 0.0012 \text{ (hadronisation)}$$

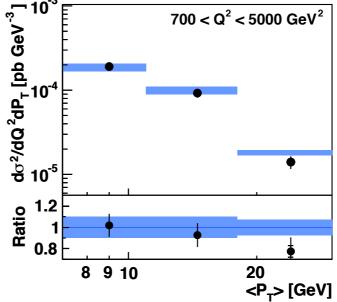
$$^{+0.0045}_{-0.0036} \text{ (scales)}$$

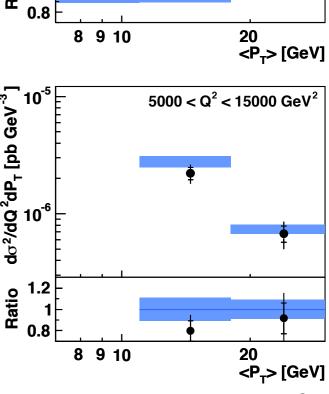
Only combined PDF / α_S fit on the market

High Q² NC Multi-jets

HIprelim-II-032


New HI measurement of inclusive, dijet and trijet rates First measurement of double diff'l trijet cross section Significantly reduced systematic errors 1% hadronic scale uncertainty For now - unnormalised cross sections...

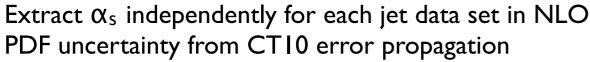

> Jets in Breit frame: $5 < P_T < 50 \text{ GeV}$ $M_{12} > 16 \text{ GeV}$


Greater sensitivity to α_s with more jets High Q^2 and large jet $P_T \Rightarrow$ multi-scale QCD problem Good description in NLO (worse for di-jets at low $P_T > ...$)

NLO calculation $\mu_R = \mu_F = \sqrt{\frac{1}{2}(Q^2 + P_T^2)}$ scales varied by factors of 2 for uncertainty

Trijet Cross Section

 $200 < Q^2 < 270 \text{ GeV}^2$


<P_T> [GeV]

 $400 < Q^2 < 700 \text{ GeV}^2$

High Q² NC Multi-jets

HIprelim-II-032

Di-jet rates in reasonable agreement $\sim 10\%$ discrepancy at low $< P_T >$ Data want smaller α_s or smaller xg?

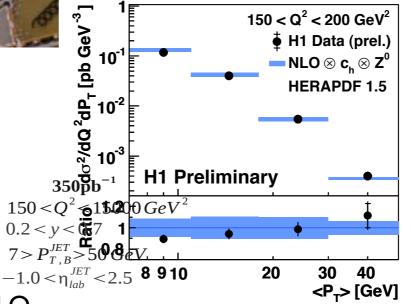
Inclusive jets:

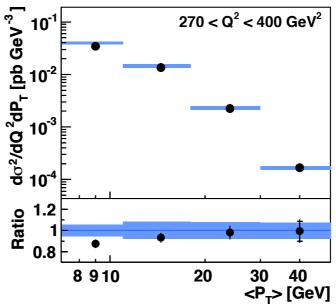
$$\alpha_{\rm s}(M_{\rm Z}) = 0.1190 \pm 0.0021(exp.) \pm 0.0020(pdf)_{-0.0056}^{+0.0050}(th.)$$

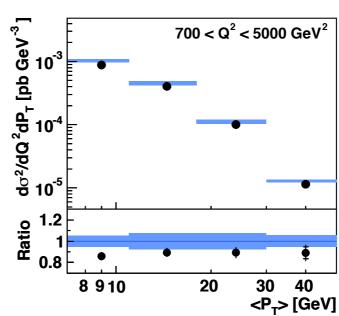
Dijets:

$$\alpha_s(M_Z) = 0.1146 \pm 0.0022(exp.) \pm 0.0021(pdf)_{-0.0045}^{+0.0044}(th.)$$

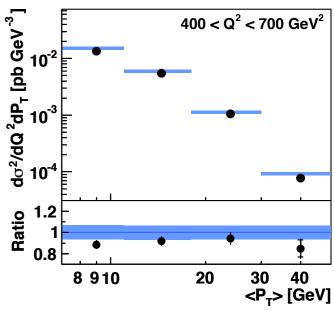
Trijets:


$$\alpha_s(M_z) = 0.1196 \pm 0.0016 (exp.) \pm 0.0010 (pdf)_{-0.0039}^{+0.0055} (th.)$$


Achieved ~1% experimental precision on α_s Theoretical uncertainty (scales) dominate ~4% PDF uncertainty ~1%


To come:

Use of normalised cross sections cancellation of systematic uncertainties \rightarrow reduced error for α_s


Dijet Cross Section

