HERAFitter update

Krzysztof Nowak

PDF4LHC, Durham, 26^h September 2012

Introduction

A fitting tool available for fast feedback to analysers and studies within the experimental working groups

HERAFitter	Col hosted by CEDAR HepForge
 Home Subversion Tracker Wiki 	HERAFitter is a set of PDF fitting tools jointly developed by the H1 and ZEUS collaborations for determination of the parton density functions. The HERAFitter codes were used to obtain the HERAPDF sets. The current distribution contains a BETA-version of the first code released within the HERAFitter package, the H1EITTER program.
	package, the H1FITTER program.

Available at: http://projects.hepforge.org/herafitter

Developers: H1, ZEUS, CMS, ATLAS, theory groups

First **Beta** version released in September 2011 **Beta2** version released in May 2012

Beta release functionality

Input:

released IX 2011

- W and Z cross sections, asymmetry
- jets

- DIS

- error treatment: correlated, uncorrelated, Hessian, MC methods
- diffractive data
- ttbar cross sections

Parametrization:

- Standard functional form
- Chebyshev
- PDFs from LHAPDF

Theory:

- FastNLO (NLOJET++)
- Applgrid (NLOJET++, MCFM)
- ZM-VFNS (QCDNUM)
- VFNS RT
- VFNS ACOT
- FFNS ABM
- DIPOLE models (GBW)
- HATHOR

Output:

- Pdfs at predefined scales
- LHAPDF grids
- NNPDF reweighing tool

Beta 2 release upgrades

Input:

released V 2012 (bug-fix patch VII 2012)

- DIS
- W and Z cross sections, asymmetry
- jets
- error treatment: correlated, uncorrelated, Hessian, MC methods
- ★ diffractive data
- \star ttbar cross sections

Parametrization:

- Standard functional form
- Chebyshev
- ★ PDFs from LHAPDF

Theory:

- FastNLO (NLOJET++)
- Applgrid (NLOJET++, MCFM)
- ZM-VFNS (QCDNUM)
- VFNS RT
- ★ VFNS ACOT
- ★ FFNS ABM
- \star DIPOLE models (GBW)
- ★ HATHOR

Output:

- Pdfs at predefined scales
- LHAPDF grids
- ★ NNPDF reweighing tool

Beta 2 release upgrades

Input:

released V 2012 (bug-fix patch VII 2012)

- DIS
- W and Z cross sections, asymmetry
- jets
- error treatment: correlated, uncorrelated, Hessian, MC methods
- ★ diffractive data
- \star ttbar cross sections

Parametrization:

- Standard functional form
- Chebyshev
- ★ PDFs from LHAPDF

Theory:

- FastNLO (NLOJET++)
- Applgrid (NLOJET++, MCFM)
- ZM-VFNS (QCDNUM)
- VFNS RT
- ★ VFNS ACOT
- ★ FFNS ABM
- ★ DIPOLE models (GBW)
- ★ HATHOR

Output:

- Pdfs at predefined scales
- LHAPDF grids
- **★** NNPDF reweighing tool

Since beta 2 release:

- Covariance matrix based $\chi^{\scriptscriptstyle 2}$
- Flexible parametrisation support + regularisation
- Improved systematics treatment
- Updated FastNLO code,
- New dipole models
- Unintegrated PDFs activity
- HERAverager
- Nuclear PDFs
- QED fits

Covariance matrix representation

A new χ^2 calculation method available based on a full covariance matrix inversion

$$\chi^{2} = \sum_{i,j} (D_{i} - T_{i}) Cov_{i,j}^{-1} (D_{j} - T_{j})$$

- When no statistical correlations used the new method is exactly equivalent to the original HERAFITTER approach (based on nuisance parameters)

- Important when statistical correlations need to be taken into account

$150 < O^2 < 200 \text{ CoV}^2$		jet					
150 <	G < 200 GeV	1 a	1 b	1 c	1 d		
jet	1 a	100	16	5	1		
	1 b	16	100	12	2		
	1 c	5	12	100	8		
	1 d	1	2	8	100		

$150 < O^2 < 200 \text{GeV}^2$		2-jet			
100 <			1 a 1 b 1 c 1 d		
jet	1 a	59	19	2	0
	1 b	22	72	12	1
	1 c	0	19	77	6
	1 d	0	0	16	78

III. Unfolded measurements often come with the full covariance matrix information

Now all of this can be correctly treated with the HERAFITTER

I. Autocorrelations in the inclusive jet measurement **II.** Correlations between inclusive and dijet measurements

Covariance matrix representation

Cross check of HERAPDF 1.6 (inclusive DIS + jets) fitted using **nuisance parameters** and **covariance matrix** methods

- Almost perfectly the same result (verification whether method is working)
- Here autocorrelations of inclusive jets do not make much difference

Redundant parametrisation

Extraction of PDFs from fits relies on ansatz such as parametrisation, which may introduce a bias and has some associated uncertainty

HERAPDF (and HERAFITTER) estimates uncertainty on PDF parametrisation by adding parameters to the basic functional form, $xf(x,Q^2) = Ax^B(1-x)^C$ until χ^2 saturation

The same used in HERAFITTER.

Now we can use more flexible parametrisation with 22 instead of 13 free parameters

$$xf(x,Q^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$$

- A normalisation
- B low x behaviour
- C high x behaviour
 - D,E medium x tuning

HERAFITTER includes regularisation mechanisms for underconstrained fit:

- 1. Redundant parametrisation with data driven stopping criteria (a la NNPDF)
- 2. Redundant parametrisation with χ^2 regularisation

Redundant parametrisation 1

Data points split randomly into **Fit** and **Control** sample **Fit** sample used to determine PDF parameters, semi-monotonically decreasing χ^2 **Control** sample used to protect against over-fitting,

Stopping criteria bound to minimum in the χ^2 (iterations) of the **Control** sample Uncertainty bands estimated using a set of fits with different random splits (MC method)

Krzysztof Nowak, PDF4LHC meeting, 26.09.2012

Redundant parametrisation 2

2. Use a parameters considered as redundant in a regularisation criteria as a χ^2 penalty term:

$$\chi_{reg}^2 = T \sum_f \left(\left(\frac{D_f}{\Delta D} \right)^2 + \left(\frac{E_f}{\Delta E} \right)^2 \right)$$

Comparison of the error bands obtained with two redundant parametrisation methods:

Both methods are now implemented in the HERAFITTER

Krzysztof Nowak, PDF4LHC meeting, 26.09.2012

HERA averager

A new package containing (rewritten) code used to combine H1 and ZEUS data is now included in the HERAFITTER

Procedure consist of two parts:

- swimming: data points are moved to a common binning
- averaging: based on a $\chi^{\rm 2}$ minimisation

Input files and steering conformed to HERAFITTER standard

$$\chi^2(\boldsymbol{m},\boldsymbol{b}) = \sum_i \frac{[\boldsymbol{m}^i - \sum_j \Gamma^i_j \boldsymbol{b}_j - \mu^i]^2}{\Delta_i^2} + \sum_j \boldsymbol{b}_j^2$$

- μ_i is a measured central value
- m_i is a prediction for the measurement
- Γ_i^i is a matrix of correlated systematics
- Δ_i^2 is a squared sum of squared stat. and uncorr syst. uncertainties
- b_i^2 is a shift of the corr. systematic

Unintegrated PDFs

p_t

YYYYYYY

 $k_t \neq 0$

Work in progress on integrating uPDF in the HERAFITTER (H. Jung)

$$\frac{d\sigma}{dxdQ^2} = \int dx_g \left[dk_\perp^2 x_g \mathcal{A}_i(x_g, k_\perp^2, p) \right] \hat{\sigma}(x_g, k_\perp^2, x, Q^2)$$

For the moment only gluon uPDF fitted and using only NC DIS – first step!

New dipole model implementation

Dipole model of DIS as small x in the proton rest frame

Already in beta2: Golec-Biernat Wuesthoff (GBW): $\hat{\sigma}(r, x) = \sigma_0 \left(1 - \exp(-r^2/R_s^2)\right)$, Now also Bartels-Golec-Kowalski (BGK) interaction parametrisation:

$$\hat{\sigma}(r, x) = \sigma_0 \left\{ 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x, \mu^2) / (3\sigma_0)\right] \right\}$$
Gluon PDF evolved by DGLAP equation

Krzysztof Nowak, PDF4LHC meeting, 26.09.2012

In addition / planned...

Updates and work ongoing in few more areas:

- Updated treatment of correlated systematic uncertainties (offset method, additive errors)
- Updated FastNLO
- Updated ABM code
- Nuclear PDFs
- QED fits
- New data/theory files (distributed a la LHAPDF grids)

In addition / planned...

Updates and work ongoing in few more areas:

- Updated treatment of correlated systematic uncertainties (offset method, additive errors)
- Updated FastNLO
- Updated ABM code
- Nuclear PDFs
- QED fits
- New data/theory files (distributed a la LHAPDF grids)

Since beta 2 release a lot of activities, new users attracted, new functionalities added Steady growing number of developments, all in one place in an open format, easy verification, cross-model benchmarking etc. New release planned for beginning of 2013

PDF school at DESY with HERAFITTER tutorial: 22-24 October