

Neutrinoless Double-Beta Decay Simon JM Peeters

Theoretical and experimental background

Neutrinoless double-beta decay $(0\nu\beta\beta)$

Lepton flavour violation (by 2)!

Majorana nature of the neutrino (Slechter and Valle, 1982)

Provide information for:

Absolute neutrino mass scale (A, Z Neutrino mass hierarchy The seesaw model: *help explain why neutrinos are so light* Leptogenesis: *the possible origin of the matter-antimatter asymmetry in the Universe*

SIMON JM PEETERS, PPAP MEETING B'HAM, SEP 2012

 $(A,Z) \to (A,Z+2) + 2e^{-1}$

 $\tau_{0\nu}^{-1} = G_{0\nu}(Q,Z) \left| M^{0\nu} \right|^2 \left< m_{ee} \right>^2$

Towards a Resolution of the Double Beta Decay Problem (ECT, Trento) Sep 2012, with contributions from:

- Sean Freeman (nucleon transfer reactions, Manchester)
- Ben Kay (nucleon transfer reactions, York)

$0\nu\beta\beta$: a vibrant field

Sensitivity

$0\nu\beta\beta$: a vibrant field

$0\nu\beta\beta$: a vibrant field

X: KK claim

factor 2 in m_{ee} is a combined factor 16 of M x t x B x ΔE

Experimental grouping

- **calorimeter** (oa scintillator)
- + Large mass
- Lower energy resolution

- external source detectors (oa gas TPC) + Event topology, leaving clean background (except 2vββ)
- Difficult to get large mass

Experimental grouping

- calorimeter (oa scintillator)
- + Large mass
- Lower energy resolution

- external source detectors (oa gas TPC) + Event topology, leaving clean background (except 2vββ)
- Difficult to get large mass

Experimental grouping

- calorimeter (oa scintillator)
- + Large mass
- Lower energy resolution

- external source detectors (oa gas TPC) + Event topology, leaving clean background (except 2vββ)
- Difficult to get large mass

The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds. This will yield a zero-background experiment in the first phase.
- 3. Aim to reach the inverted mass hierarchy (~50 meV) region by the end of the decade.
- 4. In the event of a discovery by any of the next-generation experiments, the tracking-calorimeter approach is by far the best one for characterising the mechanism of $0\nu\beta\beta$ decay.

NEMO-3				
Isotope	mass, g	Q _{ββ} (keV)	$T_{1/2}(2\nu)$ (10 ¹⁹ yrs)	Comments
¹⁰⁰ Mo	6914	3035	0.71 ± 0.05	World's Best !
⁸² Se	932	2996	9.6 ± 1.0	World's Best !
⁹⁶ Zr	9.4	3348	2.35 ± 0.21	World's First & Best !
⁴⁸ Ca	7	4274	4.4 ± 0.6	World's Best !
116Cd	405	2809	2.8 ± 0.3	World's Best !
¹³⁰ Te	454	2530	70 ± 14	World's Best & First (Direct) !
¹⁵⁰ Nd	37	3367	0.90 ± 0.07	World's Best !

+ competitive $0\nu\beta\beta$ searches & many other results

SuperNEMO Demonstrator Module : Goals

- Demonstrate backgrounds & sensitivity for full SuperNEMO.
 - This will take approximately 6 months from the start of running.
 - Full SuperNEMO construction can proceed after this initial demonstration phase.

• Set the best limit on $0\nu\beta\beta$ for ⁸²Se and the best limit for a tracking-calorimeter experiment :

- Half-life limit of 6.5×10^{24} yrs corresponding to $< m_v > \sim 200-300$ meV after 2.5 yrs
- Continue to study the most interesting isotopes for $0\nu\beta\beta$ searches (⁴⁸Ca, ¹⁵⁰Nd).
 - Isotope flexibility means that we can take advantage of the latest enrichment technologies.

 Use the power of full event reconstruction to make measurements of double-beta decay processes with unprecedented sensitivity, e.g. :

¹⁵⁰Nd $\xrightarrow{\beta\beta}$ $\xrightarrow{150}$ Sm^{*}(0⁺₁) \rightarrow ¹⁵⁰Sm + 2 γ (only measured in HPGe to date)

Provide useful data for nuclear model-builders.

• Continue to develop techniques to measure and control ultra-low backgrounds.

- Including the UK-built Radon Concentration Line, able to measure Rn levels far lower than conventional detectors.
- Applications to other areas : direct dark matter detection, and beyond.

SuperNEMO UK

- -Must reconstruct β -electron tracks with high efficiency and resolution.
- •Must contribute zero background in the $0\nu\beta\beta$ analysis \rightarrow ultra-pure materials only.
- •Must be impermeable to the diffusion of radon into the gas volume \rightarrow gas-sealing
- Robotic construction for accuracy, cleanliness and mass-production capability.
- Electronics, cabling, gas-system & software.

tracker robot being commissioned (Manchester)

optical module production line (UCL)

SuperNEMO UK : Next 3 Years

- Complete the construction of the tracker in the UK (2013).
- Transport and install in the LSM (2013/2014)
- Integrate the tracker with the other Demonstrator Module components calorimeter and source foil (2014)
- Commission the Demonstrator Module (2014)
- Perform an initial 6-month long sensitivity run (2014/2015)

Existing LSM Hall (ready for SuperNEMO Demonstrator Module)

Integrated Demonstrator Module

SNO detector @ SNOLAB

DEEPEST AND CLEANEST LARGE-SPACE INTERNATIONAL FACILITY IN THE WORLD NEAR SUDBURY, ONTARIO, CANADA (350 KM NORTH OF TORONTO)

* 12 m diameter
acrylic vessel
* 9000 PMTs with
light collectors
* 7 ktonne
UPW shield:
* Cavities (urylon liner)

SNO detector @ SNOLAB

EXISTING UK INVESTMENT

UK EXPERTISE RECOGNISED

* 12 m diameter
acrylic vessel
* 9000 PMTs with
light collectors
* 7 ktonne
UPW shield:
* Cavities (urylon liner)

DEEPEST AND CLEANEST LARGE-SPACE INTERNATIONAL FACILITY IN THE WORLD

NEAR SUDBURY, ONTARIO, CANADA (350 KM NORTH OF TORONTO)

Upgrade to SNO+

780 tonne liquid scintillator

- (LAB + PPO)
- * compatible with acrylic
- * safe
- high light yield

- * Nd-loaded to 0.3% (2240 kg of natural Nd)
 - Ioading has been demonstrated to be stable of long time periods
- * New rope system to hold down the acrylic vessel
- Upgrade of many aspects of the detector
 - * refurbishment project

SNQ world leading neutrino physics

Neutrinoless Double Beta decay

Observation of this process would gives us important information about the nature of the neutrino.

(and help to understand why there is more matter than anti-matter in the universe).

Measurement of pep solar neutrinos

Thanks to its deep location, SNO+ is the only experiment that will be able to observe .

these neutrinos. These neutrinos would provide a unique probe of Non-Standard Interactions.

And much more:

Observe CNO neutrinos SNO+ has the sensitivity to do the first measurement of CNO neutrinos. This could resolve the solar composition problem.

Observe SN neutrinos Sensitivity to SN within our

galaxy. Tests Supernova and is sensitive to neutrino mass hierarchy and θ_{13} .

Part of SNEWS, the SN Early Warning System.

- Geo-neutrinos Contribute to the geological understanding of the earth.
- **Reactor neutrinos** Independent measurement of Δm_{12}^2
- Nucleon decay Unique sensitivity to invisible mode

Ovßß sensitivity

- * 0.3% loading of ¹⁵⁰Nd
- * Nuclear matrix element:

IBM-2

(Barea & Iachello, Phys. Rev. C 79 (2009)) (matrix element 2.5, phase space factor 2.69 x 10⁻¹³)

- Fiducial volume: 50%
- # 80% livetime
- * Main backgrounds:
 - Solar ⁸B
 - * ¹⁵⁰Nd 2vββ

₩²¹⁴Bi

(tagged and removed 99.98% efficiency)

₩ 208T

(tagged and removed 90% efficiency)

SOME HIGHLIGHTS OF THE REFURBISHMENT OF SNO

UK contributions

6 institutions: Oxford, Sussex, QMUL, Liverpool, Leeds and Sheffield (25% of collaboration) 12 academic faculty, 8 PhD students, 4 RAs (two externally funded plus two temporary posts leveraged from University/sub-department funds), and roughly 1 FTE of technical support Leadership roles

Analysis co-ordinator Calibration co-ordinator Leaders of the Data Flow group, Monte-Carlo group, Reconstruction group, Anti-neutrino group, SuperNova group Leading the investigation for improved sensitivity

Highlights of recent achievements

Improved sensitivity due to loading studies, tagged background analysis, improved fitters, PID
Installed 1/3 of an external optical calibration system with innovative LED drivers.
Commissioning run next month: first SNO+ data

Timeline

- * Finish work in cavity
- * Process system construction
- * 2013

* 2012

- Water phase
- Scintillator filling
- * 2014
 - Isotope introduced
 - * First Neutrinoless Double-Beta Decay phase

After a successful first phase, demonstrating the technique, a second phase is planned to take the search down to 50 meV and beyond.

Under investigation, avenues that are being explored are:

Further optimisations, enrichment of Nd, alternative (enriched) isotopes

Solar neutrinos

Solar neutrinos

1 YR DATA 50% FIDUCIAL VOLUME

SNOLAB is very deep: very low muon flux, and thus insignificant ¹¹C background

- Precise measurement of pep flux and improvement on θ_{12} measurement (future thoughts on intermediate baseline reactor experiments)
- CNO neutrinos probe of metallicity problem
- Dark Matter and LBL experiments

Solar neutrinos

1 YR DATA 50% FIDUCIAL VOLUME

SNOLAB is very deep: very low muon flux, and thus insignificant ¹¹C background

- Precise measurement of pep flux and improvement on θ_{12} measurement (future thoughts on intermediate baseline reactor experiments)
- CNO neutrinos probe of metallicity problem
- Dark Matter and LBL experiments

Conclusions

Major 0v $\beta\beta$ Experiments and Timescales

• Currently running/planned experimental phases, reaching $< m_v > \sim 100 \text{ meV}$:

Summary

* UK has a leading role in the two main experimental approaches in 0vββ

- SuperNEMO improving NEMO3
- SNO+ promising innovative approach

which should be maintained.

* Exciting times: ground breaking particle physics results could be around the corner

ß

* Through SNO+, the UK continues to play a dominant role in solar neutrino physics