Longbase Neutrino Experiments

Neil McCauley University of Liverpool PPAP Strategy Meeting, Birmingham, Sep 2012

Neutrino mixing

• Neutrino mixing is characterised by the PMNS matrix.

$$\mathbf{U}_{PMNS} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}$$

- Fundamental parameters of nature just like CKM
- Open questions for long baseline experiments:

inverted hierarchy

- Mass Hierarchy.
 - Either/or question.
 - Appears through matter effect.
- CPViolating Phase δ
- Mixing Angles θ_{13} , θ_{23} .
 - Octant of θ_{23}
 - Is θ_{23} maximal?

Oscillations and measurement

- Different oscillation channels are sensitive to different combinations of mixing parameters
 - In general we want to measure $P_{osc}(E_v)$
- Short Baseline Reactors: $p \sim sin^2 2\theta_{13}$, Δm_{13}^2
 - Directly measure θ_{13} .
 - Solar term at longer baselines.
- Long Baseline: $p \sim sin^2 \theta_{23} sin^2 2\theta_{13}$, Δm_{13}^2
 - Combination of mixing angles
 - Octant important.
- Corrections
 - Matter Term \rightarrow sign of Δm_{13}^2 , mass hierarchy.
 - CPTerms \rightarrow CP Even and CP odd terms \rightarrow CPV
 - Solar Term.

Current Status

- Current programs first aim : θ_{13}
 - Gatekeeper to CP Violation and Mass Hierarchy
 - Knowledge of θ_{13} required to plan next stages of neutrino program.
 - Discovery of non-zero θ_{13} key development of the last 12 months.
- Also aim to
 - Reduce uncertainties on other oscillation parameters
 - Start to test the 3 neutrino oscillation model

Reactor Experiments

- Search for θ_{13} short baseline, disappearance mode.
 - $p(\overline{v_e} \to \overline{v_e})$
- Clean measurement of θ_{13} , independent of other mixing parameters
 - Does require Δm^2 from long baseline experiments.

Reno

Daya Bay

Double Chooz

Results from Reactors

- Measurement of non-zero θ_{13} at $> 5\sigma$.
 - Daya Bay : $Sin^2 2\theta_{13} = 0.092 \pm 0.016(stat) \pm 0.005(syst) 5.2\sigma$
 - Reno : $\sin^2 2\theta_{13} = 0.113 \pm 0.013(\text{stat}) \pm 0.019(\text{syst}) 4.9\sigma$

J-PARC Main Ring (KEK-JAEA, Tokai)

T2K Experiment

Super-Kamiokande

(ICRR, Univ. Tokyo)

- Narrow band neutrino beam Epeak ~600 MeV
- First measurements using off-axis beam technique.

T2K Data

• T2K now running again and fully operational following the March 2011 earthquake.

Detection of $v_{\mu} \rightarrow v_{e}$

- 11 events observed, 2.94 background expected
- Detection of θ_{13} at 3.2 σ .
- $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$
 - Normal Hierarchy, $\delta=0$
- Fit uses data from near detector and NA61 to constrain neutrino flux and interactions at SK
 - Crucial part of the experimental program.

Minos

10

- 735 km baseline
- Uses NUMI beam in low energy configuration
 - Full dataset now collected.
- 5.4 kton magnetised iron calorimeter
 - 980 ton near detector

Measurements of θ_{23}

- Atmospheric neutrino results still very competitive.
- Crucial to improve measurement of θ_{23} as it appears with θ_{13} in long baseline probabilities.

MINOS Far Detector Data

Prediction, No Oscillations

Uncertainty (oscillated)

Low Energy Beam, v,-mode

10.71×10²⁰ POT MINOS PRELIMINARY

10

Reconstructed v_u Energy (GeV)

15

20

Backgrounds (oscillated)

Prediction, ∆m²=2.41×10⁻³ eV²

30

50

500

400

Cents / GeV 2000 2000

100

Long baseline experiments to ~2020

- For the next decade the neutrino community will be working to fully exploit existing neutrino beamlines:
 - JPARC-SK
 - NUMI
 - CNGS
- Improved measurements of θ_{13} , θ_{23} and Δm^2 .
 - Requires reduction in systematics with better cross section measurements.
- Potential sensitivity to CP violation in some scenarios.

T2K Programme

- Plan to continue increasing beam power over the next 10 years.
 - Aim for 750kW by 2018
 - 400 MeV Linac upgrade in 2013 long shutdown.
 - Final target dataset 750kWx5x10⁷s.
 - Current data $\sim 5\%$ of this.
- Significant reduction in error bars for θ_{13} , θ_{23} and Δm_{23}^2
- Program of cross section measurements with near detector.

ΝΟνΑ

- Continued exploitation of the NUMI beamline.
- 14 kt totally active scintillatior detector.
 - On surface.
 - Ash River Mn
- Baseline 810km
 - 14mrad off axis
- Beam power 350 kW $\rightarrow \sim$ 700kW

NOvA physics reach

- Assume 3 yr ν / 3 yr anti ν .
- Potential for 5σ Ve appearance in first year
- Investigate mass hierarchy, CPV and θ_{23} including octant in course of run.

Other experiments in the NUMI beamline

• MINOS+

- Continued exploitation of MINOS detector
- Sterile Neutrino Tests via Unitarity.
 - Disappearance at higher energy.
- MINERvA
 - Neutrino Cross Section Measurements
 - Started Operation in 2010
- Other options have been discussed
 - Glade
 - Water Cherenkov in Lake Superior.

Combining Results

- In many ways T2K and NOvA complement each other.
 - Different matter effects
 - Can help resolve ambiguities in the parameters and improve sensitivity to mass hierarchy and CPV.
 - Reactor experiments also contribute.
- Health warning:
 - Global fits be necessity assume the 3 neutrino mixing model.

Future long baseline experiments

- The recent discovery of θ_{13} has crystallised the effort in the planning of the next generation of experiments.
- The following proposals are the culmination for a decade of work exploring new ideas and technologies.
- Next Generation experiments to:
 - Determine mass hierarchy, aim for 5σ precision.
 - Maximise sensitivity to CP violation.
 - Test the standard picture of 3 generation mixing.
 - Aim for a complementary broad physics program with astrophysical neutrino and proton decay measurements.

The European Option: LAGUNA-LBNO

- European design study to investigate future long baseline experiments and large underground facilities.
- LAGUNA 2008-2011
 - Detailed investigation and engineering of 7 sites across Europe
 - Detector technologies and capabilities.
 - > 1000 pages of documentation produced.
- LAGUNA-LBNO 2011 -
 - Continued investigation and planning of 3 sites for long baseline neutrino experiments.
 - Pyhäsalmi Glacier, LENA
 - Frejus : Mephys
 - Further exploitation of CNGS.

CERN-Pyhäsalmi

- Neutrino beam from SPS
 - 500kW
- Far site to host
 - 20kT double phase liquid argon TPC Glacier
 - 50kT magnetised iron calorimeter MIND.
- Resolve first and second oscillation maxima
 - Increases CP sensitivity
 - Test of oscillations
- Large distance
 - Spectacular matter effect!

Signals at Pyhäsalmi : Normal Hierarchy 0.12 م م م 0.1 (*, ~, v)^A 0.12 $\delta_{CP}=45^{\circ}$ δ_{CP}=0 0. **CP-conserving** 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 0 2 3 2 104 5 6 8 3 5 6 E_v (GeV) E, (GeV) (*, ~ الم P(v, ⊹v,) 0.12 0.12 $\delta_{CP}=90^{\circ}$ $\delta_{CP}=180^{\circ}$ 0.1 0.1 **CP-conserving** 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 2 3 3 4 5 6 7 8 9 2 5 6 8 10 10 7 9 E, (GeV) E, (GeV)

21

Signals at Pyhäsalmi : Inverted Hierarchy

22

Physics reach of CERN- Pyhäsalmi

- After 10 years:
 - Full coverage of matter effect at 5σ .
 - 71% (44%) coverage of CPV at 90% (3σ).

US Program : LBNE

- Neutrino Beam from Fermilab to homestake
 - Baseline of 1300 km
 - Good sensitivity to matter effect and CP.
- Recently underwent reconfiguration to meet US budgetary constraints.
 - Requirements for a staged approach

Phase 1

- Construct upgradeable beamline FNAL-Homestake 700 kW.
- 10 kt surface single phase LAr TPC.
- No near detector.
- Aim for CD1 by years end.

 $\begin{array}{c} \textbf{3}\sigma \; \delta_{\text{CP}} \; \textbf{Fraction vs Baseline} \\ \textbf{35kt LAr} \end{array}$

Physics Reach of LBNE phase 1

- Can determine mass hierarchy at 3σ .
- Some coverage of CP violation.

25

• Precision measurement of other oscillation parameters.

Upgrades to LBNE

- Scope for future development
 - Far Detector underground : 35kt LAr
 - Intensity : Project X
 - Improved systematics : Near Detector(s)
- There is also scope for foreign investment in phase 1.
 - 15% additional cost far detector underground.
 - 15% additional cost add near detector.
 - Open to contributions to any aspect of the project.

Japanese options

- Exploit the current JPARC neutrino beam.
 - Expect 750kW by ~2020.
- Hyper-Kamiokande
 - 0.56 Mton fiducial water Cherenkov
 - ~20 x SK
 - 2 caverns
 - 99000 PMTs
 - 20% coverage
 - Aim for construction in 2018
- Alternative
 - Okinoshima
 - L=658km OA=0.78deg
 - LAr far detector

Hyper Kamiokande Sensitivity

- Assume 3 year neutrino / 7 years anti neutrino.
 - 5% systematics

28

- Good sensitivity to CP
 - 77% (55%) coverage at 3 (5) sigma.
 - Aim to access to Mass Hierarchy though joint analysis with atmospheric neutrinos and other experiments.
- Rich physics program of proton decay, extraterrestrial and atmospheric neutrinos.

Comments on the long baseline program

- The discovery of large θ_{13} has condensed the options for the next generation of long baseline experiments.
- 5σ measurement of the mass hierarchy and significant regions of the CP violating phase are possible.
- Mixing measurements should be made at high precision to test the 3 neutrino mixing paradigm.
- Experiments and facilities should be designed for further extension to future experiments, should the data guide us in that direction.
- Experiments to measure neutrino cross sections and hadron production will also be required and will play a key role in these measurements.

Conclusions

- Discovery of θ_{13} signposts the next steps for long baseline neutrino experiments.
- There is an experimental program that will take us to ~ 2020
- To allow for clear and unambiguous discoveries we need to next generation experiments
 - Need to push forward with these steps.