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Lattice QCD =  fully nonperturbative 
QCD calculation 
RECIPE
• Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral
(inc effect of u, d, s, (c) sea quarks)
• Calculate valence quark propagators 
to give “hadron correlators” 

• Determine      and fix       to get 
results in physical units.

a mq

• Fit for masses and matrix elements

a

• extrapolate to                               
for real world

a = 0, mu,d = phys

• cost increases as              
and with statistics, volume.

a → 0,ml → phys
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9. Quantum chromodynamics 29

overall χ2 to the central value is determined. If this initial χ2 is larger than the number
of degrees of freedom, i.e. larger than the number of individual inputs minus one, then
all individual errors are enlarged by a common factor such that χ2/d.o.f. equals unity.
If the initial value of χ2 is smaller than the number of degrees of freedom, an overall,
a-priori unknown correlation coefficient is introduced and determined by requiring that
the total χ2/d.o.f. of the combination equals unity. In both cases, the resulting final
overall uncertainty of the central value of αs is larger than the initial estimate of a
Gaussian error.

This procedure is only meaningful if the individual measurements are known not to
be correlated to large degrees, i.e. if they are not - for instance - based on the same
input data, and if the input values are largely compatible with each other and with the
resulting central value, within their assigned uncertainties. The list of selected individual
measurements discussed above, however, violates both these requirements: there are
several measurements based on (partly or fully) identical data sets, and there are results
which apparently do not agree with others and/or with the resulting central value, within
their assigned individual uncertainty. Examples for the first case are results from the
hadronic width of the τ lepton, from DIS processes and from jets and event shapes in
e+e− final states. An example of the second case is the apparent disagreement between
results from the τ width and those from DIS [264] or from Thrust distributions in e+e−

annihilation [278].
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Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1184 ± 0.0007 is indicated by the dashed line and the shaded band.

Due to these obstacles, we have chosen to determine pre-averages for each class of
measurements, and then to combine those to the final world average value of αs(MZ),
using the methods of error treatment as just described. The five pre-averages are
summarized in Fig. 9.3; we recall that these are exclusively obtained from extractions
which are based on (at least) full NNLO QCD predictions, and are published in
peer-reviewed journals at the time of completing this Review. From these, we determine
the new world average value of

αs(M
2
Z) = 0.1184 ± 0.0007 , (9.23)
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Figure 7. Summary of the glueball masses compared to experimental meson masses. The

experimental results are from the PDG [29] and from Anisovich et al. [57–59].

by other experiments. We plot the results for I = 0 mesons in [57, 58], but plot the 2++

states from [59]. These additional meson states from Anisovich et al. [57–59] have been

used to find some experimental glueball candidates [61] from the quenched calculations of

Morningstar and Peardon.

Bali [62] has plotted the quenched glueball spectrum with the experimental masses of

the charmonium system.

5 Conclusions and future prospects

The most conservative interpretation of our results is that the masses in terms of lattice

representations are broadly consistent with results from quenched QCD. We do not see any

evidence for large unquenching effects, however a definitive calculation requires a continuum

extrapolation, and the inclusion of fermionic operators. In Tab. 7 we tentatively assign JPC

quantum numbers to 10 glueballs.

Of particular note in Tab. 4 is that Meyer and Teper [25] do not see the two spin

exotic states identified by Morningstar and Peardon [2]. In their summary of the glueball

spectrum Morningstar and Peardon note that their spin exotic glueball 2+− could actually

be part of 5+−, 7+−, or 11+− glueball. Mathieu [42] have also compared the results

for glueball masses from Morningstar and Peardon with those from Teper and Meyer.

Our result for the mass of the 0+− are consistent with the result from Morningstar and

Peardon [2], although our errors are large for this heavy state. Meyer and Teper[4, 25] used

– 13 –

glueball 
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Figure 4: Nonsinglet average momentum fraction 〈x〉u−d vs. m2
π from LHP (114),

RBC and UKQCD (115), and ETM (116). The last has 2+1+1 flavors of sea
quark, the others 2+1. Fits to experiment from MSTW (117) and ABM (118);
others fall between these two.

Note that earlier work with only 2 flavors of sea quark yielded confusing results.
The low moments of quark densities from 2+1- and 2+1+1-flavor simulations are
approaching the point where the lattice-QCD results could be incorporated into
the traditional fits of experimental data. For collider phenomenology, the real
challenge for lattice QCD is to compute similar moments of the gluon density,
which are less well constrained by low-energy experiments.

8 QCD Thermodynamics

The previous sections consider isolated hadrons at zero temperature. Soon after
the Big Bang, however, the universe was much hotter than it is now, and in
neutron stars, for example, the baryon density is much higher than in normal
nuclear matter. These phenomena motivate the study of the thermodynamics of
QCD. Even within lattice gauge theory, thermodynamics is a vast subject (119,
120), so this review touches only on some of the more fascinating aspects.

Thermodynamics starts with thermal averages in the canonical ensemble

〈•〉 =
Tr

[

• e−Ĥ/T
]

Tr e−Ĥ/T
, (12)

where T is the temperature, and the traces Tr are over the Hilbert space of the
QCD Hamiltonian Ĥ. In fact, the average on the left-hand side of Equation 12
is precisely that of Equation 2; the time extent N4 specifies the temperature
T = (N4a)−1. The eigenstates of Ĥ—a.k.a. hadrons—do not change with T , but
as T increases the vacuum no longer dominates the way it does in Equations 3–5,
and multi-hadron states begin to play a role in the thermal average.

The simplest observables are quantities like the energy, pressure, and entropy
density, and order parameters sensitive to symmetry breaking. The thermal state
can either restore a spontaneously broken symmetry of the vacuum or be a state

Hadronic light-by-light

Feynman Diagrams as Space Invaders

Hadronic vacuum polarization
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The fit tests the combination of SM (intended as the underlying theory only), 
experimental results and theoretical inputs (lattice-QCD, perturbative QCD)
Glaring problems are: 

inclusive vs exclusive

             vs 

Vub

sin(2β) BR(B → τν)
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muon g-2 

SM rates for 
hadronic EW 
processes need 
lattice QCD ....

proton structure
�x�(u−d)

Precision electroweak MEs
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Finally, NB0
(s)

→µ+µ− is the number of observed signal

events. The observed numbers of B+ → J/ψK+, B0
s →

J/ψφ and B0 → K+π− candidates are 340 100 ± 4500,
19 040 ± 160 and 10 120 ± 920, respectively. The three
normalization factors are in agreement within the uncer-
tainties and their weighted average, taking correlations
into account, gives αnorm

B0
s→µ+µ− = (3.19 ± 0.28) × 10−10

and αnorm
B0→µ+µ− = (8.38± 0.39)× 10−11.

For each bin in the two-dimensional space formed by
the invariant mass and the BDT we count the number
of candidates observed in the data, and compute the ex-
pected number of signal and background events.

The systematic uncertainties in the background and
signal predictions in each bin are computed by fluctu-
ating the mass and BDT shapes and the normalization
factors along the Gaussian distributions defined by their
associated uncertainties. The inclusion of the systematic
uncertainties increases the B0 → µ+µ− and B0

s → µ+µ−

upper limits by less than ∼ 5%.
The results for B0

s → µ+µ− and B0 → µ+µ− decays,
integrated over all mass bins in the corresponding signal
region, are summarized in Table I. The distribution of
the invariant mass for BDT>0.5 is shown in Fig. 1 for
B0

s → µ+µ− and B0 → µ+µ− candidates.

FIG. 1. Distribution of selected candidates (black points)
in the (left) B0

s → µ+µ− and (right) B0 → µ+µ− mass
window for BDT>0.5, and expectations for, from the top,
B0

(s) → µ+µ− SM signal (gray), combinatorial background

(light gray), B0
(s) → h+h�− background (black), and cross-

feed of the two modes (dark gray). The hatched area depicts
the uncertainty on the sum of the expected contributions.

The compatibility of the observed distribution of
events with that expected for a given branching frac-
tion hypothesis is computed using the CLs method [15].
The method provides CLs+b, a measure of the com-
patibility of the observed distribution with the signal
plus background hypothesis, CLb, a measure of the
compatibility with the background-only hypothesis, and
CLs = CLs+b/CLb.

The expected and observed CLs values are shown in
Fig. 2 for the B0

s → µ+µ− and B0 → µ+µ− channels,
each as a function of the assumed branching fraction.
The expected and measured limits for B0

s → µ+µ− and
B0 → µ+µ− at 90% and 95% CL are shown in Table II.
The expected limits are computed allowing the presence
of B0

(s) → µ+µ− events according to the SM branching
fractions, including cross-feed between the two modes.

The comparison of the distributions of observed
events and expected background events results in a p-
value (1− CLb) of 18% (60%) for the B0

s → µ+µ−

(B0 → µ+µ−) decay, where the CLb values are those cor-
responding to CLs+b = 0.5.

A simultaneous unbinned likelihood fit to the mass pro-
jections in the eight BDT bins has been performed to
determine the B0

s → µ+µ− branching fraction. The sig-
nal fractional yields in BDT bins are constrained to the
BDT fractions calibrated with the B0

(s) → h+h�− sam-

ple. The fit gives B(B0
s → µ+µ−) = (0.8+1.8

−1.3) × 10−9,
where the central value is extracted from the maximum
of the logarithm of the profile likelihood and the uncer-
tainty reflects the interval corresponding to a change of
0.5. Taking the result of the fit as a posterior, with a
positive branching fraction as a flat prior, the probabil-
ity for a measured value to fall between zero and the SM
expectation is 82%, according to the simulation. The
one-sided 90%, 95% CL limits, and the compatibility
with the SM predictions obtained from the likelihood, are
in agreement with the CLs results. The results of a fully
unbinned likelihood fit method are in agreement within
uncorrelated systematic uncertainties. The largest sys-
tematic uncertainty is due to the parametrization of the
combinatorial background BDT.

In summary, a search for the rare decays B0
s → µ+µ−

and B0 → µ+µ− has been performed on a data sam-
ple corresponding to an integrated luminosity of 1.0 fb−1.
These results supersede those of our previous publica-
tion [6] and are statistically independent of those ob-
tained from data collected in 2010 [12]. The data are
consistent with both the background-only hypothesis and
the combined background plus SM signal expectation at
the 1σ level. For these modes we set the most stringent
upper limits to date: B(B0

s → µ+µ−) < 4.5 × 10−9 and
B(B0 → µ+µ−) < 1.03× 10−9 at 95% CL.

We express our gratitude to our colleagues in the
CERN accelerator departments for the excellent perfor-
mance of the LHC. We thank the technical and admin-
istrative staff at CERN and at the LHCb institutes,
and acknowledge support from the National Agencies:
CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN;
NSFC (China); CNRS/IN2P3 (France); BMBF, DFG,
HGF and MPG (Germany); SFI (Ireland); INFN (Italy);
FOM and NWO (The Netherlands); SCSR (Poland);
ANCS (Romania); MinES of Russia and Rosatom (Rus-
sia); MICINN, XuntaGal and GENCAT (Spain); SNSFSunday, 16 September 2012
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Figure 3: Temperature dependence of the renormalized chiral susceptibility (m2∆χψ̄ψ/T 4), the strange quark
number susceptibility (χs/T 2) and the renormalized Polyakov-loop (PR) in the transition region. The different
symbols show the results for Nt = 4, 6, 8 and 10 lattice spacings (filled and empty boxes for Nt = 4 and 6,
filled and open circles for Nt = 8 and 10). The vertical bands indicate the corresponding critical temperatures
and its uncertainties coming from the T !=0 analyses. This error is given by the number in the first parenthesis,
whereas the error of the overall scale determination is indicated by the number in the second parenthesis. The
orange bands show our continuum limit estimates for the three renormalized quantities as a function of the
temperature with their uncertainties.
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Lattice QCD at high temperature, density

Tc
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Upsilon 
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Transition is a CROSSOVER 
at physical quark masses

4

over a wide range of µ, consistent with dimensional anal-
ysis; in particular there is no sign of singular behaviour at
µ = µQ, although there is a systematic rise for µ >∼ µD.

FIG. 4: (Color online) Superfluid order parameter 〈qq〉/µ2

and Polyakov line versus µ.

Fig. 4 plots quantities giving information on the nature
and symmetries of the ground state. In the limit j → 0,
the diquark condensate 〈qq〉 is an order parameter for the
spontaneous breaking of U(1)B leading to baryon num-
ber superfluidity. Although the data of Fig. 4 are taken
with j %= 0, implying some care must be taken with the
extrapolation j → 0 at small µ [6], we are confident that
this symmetry is broken for all µ > µo. The approximate
flatness of the curve for µQ

<∼ µ <∼ µD is then evidence
for a scaling 〈qq〉 ∝ µ2 similar to Eqn.(7). We take this
as an indication that in this region the system consists of
degenerate quark matter with a Fermi surface disrupted
by a BCS instability.
The Polyakov line is an order parameter for decon-

finement in the limit of infinitely massive quarks – away
from this limit it continues to yield information on the
free energy of an isolated color source. Fig. 4 shows that
QC2D remains confined for µ < µD, but that there ap-
pears to be a transition to a deconfined state for chem-
ical potentials in excess of this value. In physical units
µD ≈ 850MeV, corresponding to quark density nq ≈ 16
– 32fm−3, some 35 – 70 times nuclear density.
To summarise, the simulations suggest that QC2D has

three distinct transitions (or at least crossovers). The
first, at µ = µo, is a firmly established second order
phase transition (in the limit j → 0) from vacuum to a
BEC superfluid, and is described accurately for the most
part by χPT (the quark energy density εq looks to be
an important exception). Since the pion is not especially
light with our choice of lattice parameters, implying only
a moderate separation of Goldstone and hadronic mass
scales, the µ-window within which the BEC is favoured
is not particularly wide.
The second transition at µ = µQ looks like a BEC/BCS

crossover to form a ground state where the scalings of the
observables nq(µ), p(µ), εq(µ) and 〈qq(µ)〉 all suggest it
is formed of degenerate quark matter with a well-defined
Fermi sphere, albeit one whose surface is disrupted by
a BCS condensate. We note that effective treatments
based on both χPT and NJL models predict nq/nSB to
be monotonic decreasing in this regime, and are unable
to fit the lattice data [9]. The distinct nature of this
region is also supported by the diverging behaviours of
(Tµµ)g and (Tµµ)q for µ >∼ µQ seen in Fig. 2, although
the reason for the peculiar behaviour of (Tµµ)q is not well
understood at present. The transition at µ ≈ µQ is most
likely a smooth crossover, but the exact nature of this
putative transition requires further study, in particular a
careful extrapolation to the limit of zero diquark source.
The third transition at µ = µD is signalled by a change

in the scaling of the thermodynamic observables, notably
εg(µ) and (Tµµ)q, a change in the sign of (Tµµ)g, and a
non-zero Polyakov loop. For µ > µD the system consists
of deconfined quark matter.
An immediate concern is the validity of the deconfin-

ing transition in the continuum limit. Fig. 4 shows that
with a = 0.23fm µD ≈ 600MeV, and is practically indis-
tinguishable from µQ; for this reason only a deconfined
quark matter phase was identified in Ref. [6] (Cf. Fig. 1).
In both cases, however, the quark density in lattice units
nqa3 = 0.17 (coarse) or 0.20 (fine), well short of the value
2NcNf signifying that lattice saturation artifacts have set
in – indeed for a = 0.186fm trends in all observables look
smooth out to µa = 1.0 corresponding to µ = 1.06GeV.
It is therefore plausible that the observed difference in
µD is physical, and due to the differing temperatures of
the two lattices used.
Between µQ and µD the system resembles the quarky-

onic matter recently postulated on the basis of large-Nc

arguments [2]; namely a state of degenerate matter which
is also confined, so that excitations above the ground
state remain color singlet. Because we have used Wil-
son fermions (with no manifest chiral symmetry) we are
unfortunately unable at this point to test whether chi-
ral symmetry is restored, another important aspect of
the quarkyonic hypothesis; we note however that even
in a conventional scenario χPT predicts 〈ψ̄ψ〉 ∝ µ−2 for
µ ≥ µo [5], which is likely to be difficult to distinguish
from true chiral symmetry restoration in this region, par-
ticularly if the transition is a crossover.
The apparent sensitivity of the value of µD to small

changes in temperature is consistent with the very weak
curvature of the phase boundary between confined and
deconfined phases postulated in that work, and observed
in a recent study of QC2D matter using the PNJL
model [10].
An interesting issue is whether QC2D is special in that

the Nc-quark bound states required by color confinement
are also favoured by the more general renormalisation
group argument that 2-body interactions are the only

2-color 
QCD at 
high 
density
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Introduction Recent results Concluding remarks

Results in 3D

Much like in 4D:

• SU(N) is a confining theory in the large-N limit (Teper, hep-lat/9804008)

• Confining flux tubes behave as Nambu-Goto strings (Athenodorou et al.,
1103.5854; Caselle et al., 1102.0723; Mykkänen, in progress)

• Glueball masses have a smooth dependence on N (Johnson and Teper,
hep-ph/0012287; Meyer, hep-lat/0508002)
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• The equation of state depends only trivially on N (Caselle et al., 1105.0359 and
1111.0580)

Beyond QCD .. 

Spectral Dimension

χ2/dof=35/32, CL=37%
DS(∞) = 4.04 ± 0.26, DS(0) = 1.457 ± 0.064 (includes “fitting” systematic
error) [Laiho + Coumbe, arXiv:1104.5505]
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Figure 2. Other Q = 8 supersymmetric lattices

The lattice field strength is then given by the gauged forward difference Fµν = D
(+)
µ Uν and is

automatically antisymmetric in its indices. Furthermore it transforms like a lattice 2-form and
yields a gauge invariant loop on the lattice when contracted with χµν . Similarly the covariant
backward difference appearing in DµUµ transforms as a 0-form or site field and hence can be
contracted with the site field η to yield a gauge invariant expression.

This use of forward and backward difference operators guarantees that the solutions of the
theory map one-to-one with the solutions of the continuum theory and hence fermion doubling
problems are evaded [19]. Indeed, by introducing a lattice with half the lattice spacing one can
map this Kähler-Dirac fermion action into the action for staggered fermions [22]. Notice that,
unlike the case of QCD, there is no rooting problem in this supersymmetric construction since
the additional fermion degeneracy is already required by the continuum theory.

Many other examples of supersymmetric lattices exist. Figure 2. shows two such lattices
arising in the case of eight supercharges – a two dimensional triangular lattice and a generalized
hypercubic lattice (including body and face links) in three dimensions. Notice that in all cases
almost all fields live on links with the exception of a small number of fermion site fields – the
number of those corrresponding to the number of exact supersymmetries preserved in the lattice
theory. Furthermore, in all cases the number of fermions exactly fills out multiples of a basic
Kähler-Dirac field in the corresponding number of dimensions.

5. Twisted N = 4 super Yang-Mills
In four dimensions the constraint that the target theory possess 16 supercharges singles out a
single theory for which this construction can be undertaken – N = 4 SYM.

The continuum twist of N = 4 that is the starting point of the twisted lattice construction
was first written down by Marcus in 1995 [23] although it now plays a important role in the
Geometric-Langlands program and is hence sometimes called the GL-twist [24]. This four
dimensional twisted theory is most compactly expressed as the dimensional reduction of a five
dimensional theory in which the ten (one gauge field and six scalars) bosonic fields are realized
as the components of a complexified five dimensional gauge field while the 16 twisted fermions
naturally span one of the two Kähler-Dirac fields needed in five dimensions. Remarkably, the
action of this theory contains a Q-exact piece of precisely the same form as the two dimensional
theory given in eqn. 6 provided one extends the field labels to run now from one to five. In
addition the Marcus twist requires a new Q-closed term which was not possible in the two
dimensional theory.

Sclosed = −
1

8

∫

Tr εmnpqrχqrDpχmn (14)

The supersymmetric invariance of this term then relies on the Bianchi identity εmnpqrDpFqr = 0.
The four dimensional lattice that emerges from examining the moduli space of the resulting

discrete theory is called A∗
4 and is constructed from the set of five basis vectors va pointing

supersymmetry
on lattice

Sunday, 16 September 2012



Future (with increased computing power).. 
• lattices with physically light up and down quarks in the 
sea now becoming available - no chiral extrapolation!
• very fine lattices (a<0.03 fm) allow b quarks to be treated 
relativistically rather than with effective theories
• large volumes (6 fm across) allow study of hadron 
resonances/multi-hadron states/small nuclei 
• very high statistics give access to calculations with more 
intrinsic noise - flavour singlets, glueball spectrum etc 
• finite temperature QCD calculations can be extended to 
different quark formalisms. 
• the huge space of BSM theories can be explored
• not all progress requires improved computational 
resources but it helps! 
• results for: LHC, BES, KEK, JLAB, DAFNE, RHIC, FAIR ...

Sunday, 16 September 2012



UK landscape  - people 

UK provides ~8% 
of worldwide lattice 
community.•

 20% of top-cited 
papers from hep-lat 
have at least one 
UK author^
• judged from attendance at the annual 
lattice QCD conference

^ from SPIRES, sampling years 2005-2010

8 universities form UKQCD consortium  = ~ 50 people. 
Members of  international collaborations such as:
e.g ETM, HPQCD, QCDSF, RBC-UKQCD, strongBSM 

Sunday, 16 September 2012



UK landscape  - computing 
STFC’s DiRAC (Distributed Research 
using Advanced Computing) facility 
started in 2009 with £13M LFCF grant. 

8 science consortia (UKQCD consortium + 7 astro) 
funded under phase 1 - computers at 13 sites. 
Phase 2 (2012-15) now operating - £15M capital from BIS 
plus £1.7M STFC ops (only pays electricity for one year).

5 machines at 4 sites (Cambridge, Durham, Edinburgh and 
Leicester)- coordinated management and peer-reviewed 
resource allocation (starting Dec. 2012) open to all 

Aim to provide HPC needs of theoretical particle physics 
along with astrophysics/cosmology. 

Sunday, 16 September 2012



* www.top500.org  : Hartree centre 13; HecTor 32.

Lattice field theory researchers focussed on two machines: 
1) 6-rack BG/Q at Edinburgh. DiRAC 1+2 ~ £10M (inc. 
discount from Ed-IBM collaboration on hardware). 
20 in top 500* - 1Pflops
2) Sandybridge/infiniband cluster at Cambridge. 
DiRAC 2 ~£1.5M for half machine. 
93 in top 500* - 200 Tflops (total machine). 
These machines give new 
capabilities e.g. 
results now obtained at 
physically light up/down 
quark masses.
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Calculations at physical u/d quark masses

B decay constant: R. Dowdall 
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Future needs/plans (for whole of DiRAC) 
• Top priority is for funding for electricity costs of £1M 
per year  from August 2013. 

• Increase in support staff (currently 4)  to 8 plus additional 
code development support (of 4) would improve uptime 
and efficiency. Aim to tackle some technical issues e.g. 
authentication, data handling, code efficiency, hardware in 
collaboration with others (industry, GRIDPP ..). 

• 2014-15 - DiRAC phase 3 - seeking £35M from BIS for 
20X performance upgrade. Associated support costs needed

• Increase in PDRAs (+3 per year on pre-2011 number) + 
PhDs (+10 per year) in particle theory would improve 
exploitation capabilities. 
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