

NA62 & Kaon Experiments

Evgueni Goudzovski

(University of Birmingham)

eg@hep.ph.bham.ac.uk

<u>Outline:</u>

- 1) Ultra-rare $K \rightarrow \pi v \overline{v}$ decays: theory vs experiment.
- 2) NA62 experiment and NA62UK.
- 3) Planned $K \rightarrow \pi v \overline{v}$ measurements in Japan and US.
- 4) Summary.

PPAP Community Meeting University of Birmingham • 18 September 2012

Key low energy observables

[G. Isidori, ESPP 2012, Kraków] S-LHCb

- γ from tree (B \rightarrow DK, ...)
- |Vub| from exclusive semi-leptonic B decays S-Bfactory [SuperKEKB & SuperB]
- $B_{s,d} \rightarrow l^+l^-$ S-LHCb + ATLAS & CMS
- CPV in $B_s mix$. $[\phi_s]$ S-LHCb + ATLAS & CMS
- $B \rightarrow K^{(*)} l^+ l^-$, vv S-LHCb / S-Bfactory

• $B \rightarrow \tau v, \mu v (+D)$ S-Bfactory UK involvement • $K \rightarrow \pi v v$ Kaon beams [NA62, KOTO, ORKA] (worldwide effort: K[±] and K₁ decays)

CPV in charm
 S-LHCb / S-Bfactory

Complementarity between low-energy and high-p_T physics.

Complementarity among the different low-energy facilities.

$K \rightarrow \pi v \overline{v}$ within the SM

SM: EW penguin (dominant) and box diagrams

Ultra-rare decays with the highest CKM suppression: $A_{s \rightarrow d} \sim (m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- Hadronic matrix element can be related to measured quantities (K→πev form factors).
- SM precision surpasses any other FCNC process involving quarks.
- Measurement of $|V_{td}|$ complementary to those from B-B mixing and $B^0 \rightarrow \rho \gamma$.
- $\delta BR/BR = 10\%$ would lead to $\delta |V_{td}| / |V_{td}| = 7\%$.

SM branching ratios (Brod et al., PRD83 (2011) 034030)

Mo	ode	BR _{SM} ×10 ¹¹
K⁺→π	$t^+ \sqrt{\nu}(\gamma)$	7.81±0.75±0.29
$K_L \rightarrow$	$\pi^0 \sqrt{\nu}$	2.43±0.39±0.06
		CKM CKM parametric
	Theo	pretically clean;

sensitive to new physics; almost unexplored

Region 1

Technique: decays of stopped K+

Data taking: E787 (1995–98), E949 (2002). Separated K⁺ beam (710 MeV/c, 1.6MHz). PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain). Hermetic photon veto system.

Observed candidates: Expected background: 2.6 $BR = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ Final result: PRD79 (2009) 092004

Limitations:

- Low acceptance (~1%).
- Significant background (~30%) due to π scattering in the target.

Current experimental status

NA62@CERN aims to reach ~10% precision with O(100) SM K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ events in 2 years, and is the first decay-in-flight K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ experiment.

<u>Decay signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15-35 GeV/c). <u>Advantages</u>: max detected K⁺ decays/proton ($p_K/p_0 \approx 0.2$); high acceptance (~10%); efficient photon veto (>40 GeV missing energy); good π^+/μ^+ identification by RICH. However, un-separated beam (6% kaons) → higher rates in beam tracker. <u>E. Goudzovski/Birmingham</u>, 18 Sep 2012

NA62 @ CERN

NA62 detector & sensitivity

NA62UK responsibilities & funding

<u>Key UK responsibilities</u>

- Construction & operation of the KTAG subdetector (incl. project leader)
- Co-convener of lepton flavour & exotics working group
- Coordinator of the 2007 data set analyses
- Software coordinator (from 2013)
- Leading role in computing (collaboration with GridPP)
- Conference Committee chair; 3 (out of 10) Editorial Board members

NA62UK funding

European Union:

ERC Advanced Grant (2011–2016; ~£2M) Marie Curie Fellowship (2011–2012)

Royal Society:

2 University Research Fellowships (most recent from 2012)

STFC:

Responsive RA (2008–2010) Common Fund (from 2011) Fractions of academic staff and RA (from 2012) Rutherford Fellowship (from 2013)

UK hardware contribution: KTAG

- ✤ Kaons: minority particles in the unseparated NA62 hadron beam (~6%).
- ✤ Beam kaon tagging is crucial for background suppression.
- ✤ CEDAR counters developed at CERN in 1980s for signal rates below 1 MHz.
- Upgrade for the NA62 K⁺ rate of 50 MHz: the KTAG detector replacing the old PMTs and readout.
- ✤ New optical system: 8 octants with 64 Hamamatsu PMTs (R7400-U03) each.
- Cedar operation with H_2 gas: reduces thickness from $4\%X_0$ to $0.7\%X_0$.

KTAG construction: completed

- CEDAR installed in NA62 beam line: 14 Sep 2012.
- Fully assembled KTAG (2012 configuration) shipped from Liverpool to CERN: 16 Sep 2012.
- Installation at CERN: 18-21 Sep 2012.
- Start of the technical run: 29 Oct 2012.

NA62 physics: UK leadership

Lepton Flavour Universality tests

 $\mathsf{R}_{\mathsf{K}} = \mathsf{B}\mathsf{R}(\mathsf{K}^{+} \rightarrow e^{+}\nu)/\mathsf{B}\mathsf{R}(\mathsf{K}^{+} \rightarrow \mu^{+}\nu).$

Technique established during earlier phase. Expected NA62 precision: $\delta R_K/R_K < 0.2\%$. Competitors: TREK@J-PARC, ORKA@FNAL. (both with stopped kaons)

Lepton flavour/number violation

K⁺→π⁺μ⁺e⁻, K⁺→π⁺μ⁻e⁺, K⁺→π⁻μ⁺e⁺, K⁺→π⁻μ⁺μ⁺, K⁺→π⁻e⁺e⁺, π⁰→e⁺μ⁻, ... Current upper limits: ~10⁻⁹ ... 10⁻¹¹. Foreseen NA62 limits: ~10⁻¹².

Search for heavy sterile neutrinos (m_v<m_k):

K⁺→ $\mu^+\nu_{\rm H}$ via missing mass or $\nu_{\rm H}$ → $\nu\gamma$ decay. Possible interpretation of LSND/MiniBooNE results: existence of neutrino with m~60MeV/c².¹⁰ S.N.Gninenko, PRD83 (2011) 015015

E. Goudzovski / Birmingham, 18 Sep 2012

R_k world average

vv: E391a @ KEK

<u>Technique: K_L beam (~2 GeV/c)</u>

Data taking: 2005. Pencil K_L beam (2.5×10^{18} PoT). Csl calorimeter + hermetic Pb/Sci/WLS fiber photon veto.

Observed candidates: 0 Expected background: 0.87±0.41

Final result: PRD81 (2010) 072004 BR($K_L \rightarrow \pi^0 vv$) < 2.6 × 10⁻⁸ @90%CL

Principal backgrounds:

Dominant: π^0/η production by halo neutrons

E. Goudzovski / Birmingham, 18 Sep 2012

$K_L \rightarrow \pi^0 v \overline{v}$: KOTO @ J-PARC

K⁺→ $\pi^+\nu\bar{\nu}$: ORKA @ FNAL

- Upgraded (4th generation) BNL E949 detector installed at FNAL using the Main Injector proton beam.
- Foreseen at "stage-0" of Project X intensity frontier programme.
- Possible location: the CDF hall (re-use solenoid, cryogenics, ...).
- Sensitivity improvements wrt BNL:
 ×10 (beam) and ×10 (detector).
- Possible start of data taking:
 2016 (subject to DOE approval).
- ★ O(10³) SM K⁺→ $\pi^+\nu\nu$ events in 5 years: ~5% precision.

- ★ Kaon physics worldwide is focused on ultra rare $K \rightarrow \pi v \overline{v}$ decays:
 - a key flavour observable with unique sensitivity to non-SM physics;
 - NP energy reach possibly superior to 14 TeV pp interactions.
- Construction of the NA62 detector for measurements of ultra rare K⁺ decays is at advanced stage:
 - 9 new detectors + several upgraded detectors;
 - NA62UK: significant hardware and computing contributions, physics leadership;
 - KTAG detector built in UK and shipped to CERN;
 - technical (physics) runs in 2012 (2014–2016).
- ♦ Consolidation of the UK leadership in NA62 in the longer term: funds for enhancement of the UK role in the physics exploitation.
 → Occasion for STFC to broaden UK physics programme at a modest investment
- The NA62 enthusiasm is shared by: KOTO@J-PARC (K_L: 2013–2017), ORKA@FNAL (K⁺: 2016–2021?), ... 16

NA62 straw tracker

Magnetic spectrometer:

- Minimum material: 0.5%X₀ per chamber.
 ... 4 straw chambers operating in vacuum.
- 1 chamber = 4 views (x, y, u, v); 1 view = 4 straw layers.
- Momentum resolution: $\sigma(p)/p \sim 0.3\%$.
- Angular resolution: < 60μrad.</p>
- Vertex reconstruction: $\sigma_{CDA} \sim 1 \text{ mm}$.
- ✤ Max rate per straw: 0.5 MHz.

Straw tubes:

- Length: 2.1 m, diameter: 9.8 mm.
- Spatial resolution: < 130 μ m.
- ✤ ~1800 straw tubes / chamber.
 - □ 36 μ m Cu/Au-coated mylar foils; □ Gas: Ar (70%) / CO₂ (30%) @ 1 atm.

A straw chamber assembled at CERN

NA62 large angle vetoes (LAV)

A lead glass block

- 12 stations in total (11 in vacuum);
- Each station: 4 or 5 staggered layers,
 ~20X₀,160 to 256 Pb glass blocks.
- Lead glass blocks from the former OPAL EM calorimeter.
- ✤ ~2500 blocks in total (of 4 types);
- ✤ Coverage in the region 8.5-50 mrad.

NA62 technical run 2012

The NA62 experiment (R_K phase)

Beam line & setup:

from the earlier NA48/2 experiment.

- Simultaneous K[±] beams: 74 GeV/c (±1% RMS).
- Decay volume: 114 long vacuum tank.
- Data taking: 4 months in 2007 with a minimum bias trigger.

Principal subdetectors:

 Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy ⇒ efficiency; Δp/p = 0.47% + 0.020%*p [GeV/c]

• Hodoscope fast trigger, precise time measurement (150ps).

• Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous; $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]; $\sigma_x = \sigma_y = 4.2 \text{mm/E}^{1/2} + 0.6 \text{mm}$ (1.5 mm@10GeV).

Leptonic meson decays

NA62: lepton flavour physics

Observable sensitive to Lepton Flavour Universality violation:

E. Goudzovski / Birmingham, 18 Sep 2012

$R_{K} = BR(K_{e2})/BR(K_{\mu 2})$ beyond SM

<u> 2HDM - tree level</u>

K₁₂ can proceed via exchange of charged Higgs H[±] instead of W[±] → Does not affect the ratio R_K

2HDM - one-loop level

Dominant contribution to R_{K} : H[±] mediated <u>LFV</u> (rather than LFC) with emission of v_{τ} $\rightarrow R_{K}$ enhancement can be experimentally accessible

[Masiero, Paradisi, Petronzio, PRD 74 (2006) 011701, JHEP 0811 (2008) 042]

$$\mathbf{R}_{\mathbf{K}}^{\mathsf{LFV}} \approx \mathbf{R}_{\mathbf{K}}^{\mathsf{SM}} \left[\mathbf{1} + \left(\frac{\mathbf{m}_{\mathbf{K}}^{4}}{\mathbf{M}_{\mathbf{H}^{\pm}}^{4}} \right) \left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{\mathbf{e}}^{2}} \right) |\mathbf{\Delta}_{\mathbf{13}}|^{2} \mathrm{tan}^{\mathbf{6}} \beta \right] \implies \text{ sensitive to} \\ \xrightarrow{\text{ sensitive to}} \mathbf{1} \mathbf{M}_{\mathbf{K}}^{\mathbf{1}} \mathbf{M}_{\mathbf{H}^{\pm}}^{\mathbf{1}} \left(\frac{\mathbf{M}_{\mathbf{K}}^{2}}{\mathbf{M}_{\mathbf{e}}^{2}} \right) |\mathbf{\Delta}_{\mathbf{13}}|^{2} \mathrm{tan}^{\mathbf{6}} \beta \right] \implies \mathbf{1} \mathbf{M}_{\mathbf{M}}^{\mathsf{SM}} \mathbf{M}_{\mathbf{K}}^{\mathsf{SM}} \mathbf{M}_{\mathbf{K}}^{\mathsf{SM}} \mathbf{M}_{\mathbf{K}}^{\mathsf{SM}} \mathbf{M}_{\mathbf{K}}^{\mathsf{SM}} \left(\mathbf{M}_{\mathbf{K}}^{\mathbf{1}} \mathbf{M}_{\mathbf{H}^{\pm}}^{\mathsf{SM}} \right) |\mathbf{\Delta}_{\mathbf{13}}|^{2} \mathrm{tan}^{\mathbf{6}} \beta \right] \implies \mathbf{1} \mathbf{M}_{\mathbf{K}}^{\mathsf{SM}} \mathbf{M}_{\mathbf{K}}^{\mathsf{SM}}$$

~1% effect in Minimal Supersymmetric SM [Girrbach, Nierste, arXiv:1202.4906]

Limited by recent B_s→µ⁺µ[−] measurements [Fonseca, Romão, Teixiera, arXiv:1205.1411]

Sensitive to SM extensions with 4th generation [Lacker, Menzel, JHEP 1007 (2010) 006]