

Measuring the neutrino mass hierarchy with PINGU

Justin Evans

PRECISION ICECUBE NEXT GENERATION UPGRADE

Ultra high energy cosmic particles

Protons

- Relatively abundant
- No directional information due to galactic magnetic fields

Photons

- Good directionality
- Above TeV energies, absorbed on cosmic background radiation

Neutrinos

- Good directionality
- Free to propagate at high energies
- Difficult to detect

Ultra high energy neutrinos

Detecting UHE neutrinos requires massive detectors

Megatonnes

MANCHESTER

> At PeV energies, you can afford to instrument coarsely as the events are large

00

de

<u>و او</u>

60

00

0

Â

+

Â

Â

MANCHESTER 1824

The University of Manchester

© François Montanet

Highest energy neutrinos

IceCube has observed two PeVenergy neutrino candidates

> Highest energy neutrinos ever observed

26 more high-energy candidates at lower energies

Inconsistent with standard atmospheric neutrino backgrounds at 4.1σ

A high energy IceCube event

Lower energy neutrinos

Historically, the focus has been on increasing sensitivity to high energy neutrinos

Now, these experiments are focusing on lowering the energy threshold

> Meeting the atmospheric neutrino oscillation experiments

The 1-20 GeV region is where precision atmospheric neutrino oscillation physics can be done

> PINGU and ORCA can provide megaton-scale statistics

Neutrino oscillations

11

PINGU

20-40 additional strings in the central region of IceCube

- > ~25 m spacing (c.f. 125 m for IceCube)
- > 60—100 PMT modules per string

Principle already demonstrated by DeepCore

ORCA is a similar extension planned for ANTARES

Atmospheric neutrinos

Cosmic rays strike the upper atmosphere

 Neutrinos produced from pion and muon decay

Produces a 2:1 v_{μ} : v_{e} ratio

Fewer v_e at higher energies when muons hit the ground before decaying

Approximately equal neutrino and antineutrino production

Antineutrino interaction cross section is a factor of ~2 lower

Matter effects

Atmospheric neutrinos interact with the Earth's matter

- MSW effect
- Alters oscillation probabilities

© Calvin J. Hamilton

Preliminary Reference Earth Model (PREM) Phys. Earth. Plan. Int. **25**, 297 (1981)

The Earth

Three distinct zones of density

> Sharp changes in density between the zones

The different regions can be probed by measuring the zenith angle of the neutrino
16

Neutrino oscillations in matter

Neutrino oscillations in matter

Why does this happen?

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} = \begin{pmatrix} -\frac{\Delta m^2}{4E}\cos(2\theta) \pm \sqrt{2}G_F N_e \\ \frac{\Delta m^2}{4E}\sin(2\theta) \\ \frac{\Delta m^2}{4E}\cos(2\theta) \\ \frac{\Delta m^2}{4E}\sin(2\theta) \\ \frac{\Delta m^2}{4E}\cos(2\theta) \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix}$$

This modifies the neutrino mixing, producing effective mixing angles in matter:

$$\tan(2\theta_m) = \frac{\frac{\Delta m^2}{2E}\sin(2\theta)}{\frac{\Delta m^2}{2E}\cos(2\theta) \mp \sqrt{2}G_F N_e}$$
- for neutrinos
+ for antineutrinos

This has a resonance condition for neutrinos in the normal hierarchy or antineutrinos in the inverted hierarchy

INO

A detector that can distinguish neutrinos from antineutrinos can use this information to disentangle the mass hierarchy

INO is a proposal that can do this

- Magnetised iron calorimeter
- The proposed mass is 50 kt, so the statistics are much smaller than PINGU or ORCA

PINGU

PINGU cannot distinguish neutrinos from antineutrinos

No magnetic field

But the neutrino and antineutrino cross sections differ by a factor of two

- Statistically, there will be an observable difference between the hierarchies
- And at the megatonne scale, PINGU will have plenty of statistics

Hierarchy determination

- This figure shows the situation for a perfect detector
 - Perfect angle and energy resolution

With neutrinos and antineutrinos combined, the oscillogram differs significantly between the hierarchies

Akhmedov et al., JHEP 02, 082 (2013)

MANCH

Finite detector resolution

- This figure includes a smearing to account for detector resolution
 - > 3 GeV energy resolution
 - 15° angle resolution

A difference between the two hierarchies is still visible

 $(N_{\mu}^{\rm IH} - N_{\mu}^{\rm NH})/(N_{\mu}^{\rm NH})^{1/2}$ [PINGU 1 yr] Smeared 20F +0.3218 +0.2416 +0.16 ഗ 14 +0.0812 S, (GeV) Ince -0.04-<u>0.08</u> -0.12-0.16-1.0-0.8-0.4-0.2-0.6 $\cos \theta_{2}$

Akhmedov et al., JHEP 02, 082 (2013)

The University of Manchester **Detector performance**

PINGU performance simulated using DeepCore algorithms

Energy resolution: ~(0.7 GeV + 0.2E,)

MANCH

> Angular resolution: 15° to 8° as energy increases from 5 GeV to 20 GeV

More computationally intensive algorithms can improve on this

PINGU sensitivity

Sensitivity depends on efficiency, resolution, background, etc

Even with pessimistic assumptions, the hierarchy can be determined at 3σ after two years

 \succ 5 σ within five years

MANCH

The University of Manchester

Advantages of PINGU

Relatively cheap

Startup cost of \$8M-\$12M, then \$1.25M per string

Well understood technology

IceCube and DeepCore have been very successful

Relatively fast

- > Could start deployment in 2016, working over 2—3 years
- > 3σ hierarchy determination by 2020?
- LBNE can then focus on CP violation

Summary

Ultra high energy neutrino detectors are now looking at lower energies

> Precision atmospheric neutrino studies with megatonne fiducial masses

PINGU is an extension of IceCube

> Taking the energy threshold well below 10 GeV

Neutrinos passing through the Earth interact via the MSW effect

 \succ v_{μ} disappearance probability depends on the mass hierarchy

PINGU could determine the mass hierarchy at 3σ by 2020

> ORCA is a similar extension to ANTARES