

Invisible13 Workshop Lumley Castle, 15–19 July 2013

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS

> Alessandro MIRIZZI (Hamburg University)

OUTLINE

Supernova neutrino flavor oscillations

- Observables sensitive to the mass hierarchy:
 - $\checkmark\,$ Self-induced spectral splits
 - ✓ Neutronization burst
 - ✓ Earth matter effect
 - \checkmark Rise time of neutrino signal

Conclusions

3v FRAMEWORK

• Mixing parameters: $U = U(\theta_{12}, \theta_{13}, \theta_{23}, \delta)$ as for CKM matrix

 $\textbf{c}_{12}\text{=}\cos\,\theta_{12},\,\text{etc.},\,\delta$ CP phase

Mass-gap parameters: N

meters:
$$M^2 = \left(\begin{array}{c} -\frac{\delta m^2}{2}, +\frac{\delta m^2}{2}, \pm \Delta m^2\right)$$

"solar" "atmospheric"
 $V_3 + \Delta m^2$ inverted hierarchy
 $\frac{V_1 + \delta m^2/2}{V_2}, \frac{V_1}{V_2} + \frac{\delta m^2/2}{-\delta m^2/2}$

ν₃ ι

 $-\Lambda m^2$

Invisibles13 Workshop

normal hierarchy

GLOBAL OSCILLATION ANALYSIS (2012)

[Fogli et al., arXiv:1205.5254]

REMARKS ON MASS HIERARCHY VIA FLAVOR TRANSITIONS

The hierarchy, namely, sign($\pm \Delta m^2$), can be probed (in principle), via <u>interference</u> of Δm^2 -driven oscillations with some other Q-driven oscillations, where Q is a quantity with known sign.

Barring new states/interactions, the only known options are:

- $Q = \delta m^2$ (high-precision oscill. pattern; reactors?)
- Q = Electron density (MSW effect in Earth or SNe)
- Q = Neutrino density (Collective effects in SNe)

Which of the three... will succeed? Each one is very challenging, for rather different reasons. Non-oscillation observables might provide another handle. In any case: very high accuracy required.

Alessandro Mirizzi

Invisibles13 Workshop

INVERSE SN NEUTRINO PROBLEM

Invisibles13 Workshop

"Neutrino Physics: The Art of Learning a Great Deal By Observing Nothing" (Haim Harari)

SUPERNOVA NEUTRINOS

Core collapse SN corresponds to the terminal phase of a massive star [$M \gtrsim 8 M_{\odot}$] which becomes unstable at the end of its life. It collapses and ejects its outer mantle in a <u>shock wave</u> driven explosion.

- **ENERGY** SCALES: 99% of the released energy (~ 10^{53} erg) is emitted by v and \overline{v} of all flavors, with typical energies E ~ O(15 MeV).
- TIME SCALES: Neutrino emission lasts ~10 s
- EXPECTED: 1-3 SN/century in our galaxy ($d \approx O(10)$ kpc).

THREE PHASES OF NEUTRINO EMISSION

[Figure adapted from *Fischer et al. (Basel group), arXiv: 0908.1871*] 10. 8 M_{sun} progenitor mass

(spherically symmetric with Boltzmnann v transport)

Neutronization burst

• De-leptonization of outer

Shock breakout

core layers

Accretion

- Shock stalls ~ 150 km
- v powered by infalling matter

Cooling

 \bullet Cooling on ν diffusion time scale

NEUTRINO ENERGY SPECTRA

Time-integrated normalized u spectra

"quasi-thermal" spectra

Hierarchy of the spectra

$$\langle E_e \rangle \approx 9 - 12 \text{ MeV}$$

 $\langle E_{\overline{e}} \rangle \approx 14 - 17 \text{ MeV}$
 $\langle E_x \rangle \approx 18 - 22 \text{ MeV}$

Large Detectors for Supernova Neutrinos

In brackets events for a "fiducial SN" at distance 10 kpc

NEXT-GENERATION DETECTORS

Mton scale water Cherenkov detectors

DUSEL LBNE

HYPER-KAMIOKANDE

MEMPHYS

5-100 kton Liquid Argon TPC

GLACIER

50 kton scintillator

LENA

Hanohano

SN v FLAVOR TRANSITIONS

The flavor evolution in matter is described by the non-linear MSW equations:

$$i\frac{d}{dx}\psi_{v} = \left(H_{vac} + H_{e} + H_{vv}\right)\psi_{v}$$

In the standard 3v framework

•
$$H_{vac} = \frac{U M^2 U^{\dagger}}{2E}$$

• $H_e = \sqrt{2}G_F \operatorname{diag}(N_e, 0, 0)$
• $H_{vv} = \sqrt{2}G_F \int (1 - \cos \theta_{pq}) \left(\rho_q - \overline{\rho}_q\right) dq$

Kinematical mass-mixing term

Dynamical MSW term (in matter)

Neutrino-neutrino interactions term (non-linear)

- Matter bkg potential $\lambda = \sqrt{2}G_F N_{\rho}$ ~ R⁻³
- v-v interaction $\mu = \sqrt{2}G_{\rm F}n_{\rm v} \sim {\rm R}^{-2}$
- Vacuum oscillation frequencies

Collective flavor transitions at low-radii [O (10² - 10³ km)]

Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/0511275, Duan et al. astro-ph/0606616

[see Duan et al, arXiv:1001.2799 for a review]

SELF-INDUCED SPECTRAL SPLITS

[Fogli, Lisi, Marrone, <u>A.M.</u>, arXiV: 0707.1998 [hep-ph], Duan, Carlson, Fuller, Qian, astro-ph/0703776, Raffelt and Smirnov, 0705.1830 [hep-ph], Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 [hep-ph], Duan & Friedland, arXiv: 1006.2359, <u>A.M.</u> & Tomas, arXiv:1012.1339, Choubey, Dasgupta, Dighe, <u>A.M.</u>, 1008.0308....] Flavours: $\nu_{e}, \bar{\nu}_{e}, \nu_{\chi}, \bar{\nu}_{\chi}, \bar{\nu}_{\chi}$

Antineutrinos Neutrinos Antineutrinos Neutrinos 25 15 Initial (r=30 km) Initial (r=30 km) Initial (r=30 km) Initial (r=30 km) 20 12 15 Flux (10⁵⁴ sec⁻¹MeV⁻¹) integrated over 4π Flux (10⁵⁴ sec⁻¹MeV⁻¹) integrated over 4π 10 5 3 25 15 NH (r=300 km) NH (r=300 km) NH (r=300 km) NH (r=300 km) 20 12 15 10 6 5 25 15 IH (r=300 km) IH (r=300 km) IH (r=300 km) IH (r=300 km) 20 12 15 10 6 5 3 0 20 40 60 80 0 20 40 20 40 60 80 0 20 60 0 60 80 0 40 80 Energy (MeV) Energy (MeV) Energy (MeV) Energy (MeV)

Strong dependence of collective oscillations on mass hierarchy and on the energy ("splits")

Splits possible in both normal and inverted hierarchy, for v & \overline{v} !!

Alessandro Mirizzi

Invisibles13 Workshop

OBSERVABLE SIGNATURES?

[Choubey, Dasgupta, Dighe, <u>A.M.</u>, 1008.0308]

• Spectral split may be visible as "shoulders"

However, still far from generic predictions about signatures of collective effects....Many layers of complications in the description of the flavor evolution!

SUPPRESSION OF COLLECTIVE OSCILLATIONS

At the moment, predictions are more robust in the phases where collective effects are suppressed, i.e.:

• Neutronization burst (t < 20 ms): large v_e excess and v_x deficit [Hannestad et al., astro-ph/0608695]

Accretion phase (t < 500 ms): dense matter term dominates over nu-nu interaction term [Chakraborty, <u>A.M.</u>, Saviano et al., 1104.4031, 1105.1130, 1203.1484, Sarikas et al., 1109.3601]

Large flux differences during the neutronization and accretion phase

Best cases for v oscillation effects!

Invisibles13 Workshop

NEUTRONIZATION BURST AS A STANDARD CANDLE

If mixing scenario is known, perhaps best method to determine SN distance, especially if obscured (better than 5-10%)

[Kachelriess, Tomas, Buras, Janka, Marek & Rampp, astroph/0412082] Lumley Castle, 16 July 2013

Alessandro Mirizzi

Invisibles13 Workshop

NEUTRONIZATION BURST

[see M.Kachelriess & R. Tomas, hep-ph/0412082]

Possible also in a large LAr detector [I.Gil-Botella & A.Rubbia, hep-ph/0307244]

USING EARTH EFFECT TO DIAGNOSE MASS HIERARCHY

Earth matter crossing induces additional v conversions between v_1 and v_2 mass eigenstates. The main signature of Earth matter effects – oscillatory modulations of the observed energy spectra – is <u>unambiguous</u> since it can not be mimicked by known astrophysical phenomena

Alessandro Mirizzi

Invisibles13 Workshop

EARTH MATTER EFFECT

In terms of the " inverse energy " \underline{y} , there is modulation of the spectrum with a specific wavenumber $k_{\oplus} = 2\Delta m_{\oplus}^2 L$ (indipendent of SN physics!)

FOURIER TRANSFORM OF THE SN v SIGNAL

[see Dighe et al., hep-ph/0304150; 0311172]

To "tag" the hierarchy, one may search for a known peak in the Fourier Transform (wrt y) of the event rate spectrum ($\sim \sigma F$), seemingly independently of SN input!

Invisibles13 Workshop

DEPENDENCE ON THE FLUX DIFFERENCES

• CAVEAT: How important/dominant the "Earth matter" mode is depends also on the flux difference (which is model-dependent!)

Alessandro Mirizzi

Invisibles13 Workshop

(DOWN-TO-)EARTH MATTER EFFECT

[see Borriello, Chakraborty, A.M., Serpico & Tamborra, 1207.5049]

- Sub-kpc distance required in general for unambigous detection (provided electronics can handle those rates!)
- For Liq. Argon, hope up to O(kpc) distances given the larger differences found in the neutrino channel.
- Realistically, no more than a few percent chance to detect EME at next Gal. SN

....However, some candidates at d~ 0.2 kpc exist!

The Red Supergiant Betelgeuse (Alpha Orionis)

First resolved image of a star other than Sun

Distance (Hipparcos) 130 pc (425 lyr)

6×10⁷ neutrino events in Super-Kamiokande
2.4×10³ neutrons /day from Si burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]

RISE TIME OF SN NEUTRINO SIGNAL

Garching group, 2011

- The production of \overline{v}_e is more strongly supprensed than that of v_x during the first tens of ms after bounce because of the high degeneracy of e and v_e .
- The high degeneracy allows only for a low abundance of e^+ , the production of \overline{v}_e by pair annihilation and e^+ capture on neutrons is not very efficient. Moreover, since in the optical tick regime \overline{v}_e are in chemical equilibrium with the matter, their degeneracy also blocks the phase space for the creation of \overline{v}_e via nucleonnucleon bremmstrahlung (which however is operative also for v_x).
 - $\overline{v_e}$ are produced more gradually via cc processes (e captures on free nucleons) in the accreting matter; v_x come fastly from a deeper region

The lightcurves of the two species in the first O(100) ms are quite different.

RISE TIME ANALYSIS: HIERARCHY DETERMINATION

[see Serpico, Chakraborty, Fischer, Hudepohl, Janka & <u>A.M.</u>, 1111.4483] In accretion phase one has

$$F_{\bar{\nu}_e}^D = \cos^2\theta_{12}F_{\bar{\nu}_e} + \sin^2\theta_{12}F_{\bar{\nu}_x} \qquad \text{NH}$$

 $F_{\overline{\nu}_e}^D = F_{\overline{\nu}_x}$ IH

- A high-statistics measurment of the rise time shape may distinguish the two scenarios
- Are the rise time shapes enough robustly predicted to be useful?

Models with state-of-the art treatment of weak physics (Garching simulations) suggest so: one could attribute a "shape" to NH and IH.

t [s]

• Result confirmed also with the SN simulations of Caltech group [see Ott et al., 1212.4250]

Given these promising early results, it would be mandatory in future to explore the robusteness of the signature with more and more accurate simulations.

Alessandro Mirizzi

Invisibles13 Workshop

CONCLUSIONS

- Self-induced and matter effects in SNe are strongly sensitive to the neutrino mass hierarchy
- \bullet A high-statistics SN ν detection would allow to observe possible signatures of the mass hierarchy.
- INVERSE SN NEUTRINO PROBLEM
 - ✓ Self-induced spectral splits
 - ✓ Neutronization burst
 - ✓ Earth matter effect
 - ✓ Rise time of neutrino signal

Instant identification of the ν mass hierarchy not impossible... but still many gaps to be filled.

Extract mass hierarchy

Lot of theoretical and experimental work to get the most from the next galactic SN explosion!