At what mass scales is the New Physics responsable for neutrino masses?

How to measure them?

(Scales at the origin of neutrino masses)

Sacha Davidson IPN de Lyon/CNRS

I have nothing to say (feel free to read your email)

What does gravity do with axions?

(I don't know much about axions — but we could discuss what I am confused about :))

Sacha Davidson (+ M. Elmer + G. Raffelt) IPN de Lyon/CNRS, France

- 1. the gravitational interactions of axions as *Cold* Dark Matter should
 - contribute to U expansion
 - grow density fluctuations into observed structures
- 2. Does gravity distinguish axions from WIMPs?Is a classical scalar field *really* the same as a dust of particles?
 - (a) ? axion Bose Einstein condensation (by "gravitational thermalisation")? \Rightarrow BEC supports vortices \Rightarrow caustics in galactic DM \Rightarrow axions \neq WIMPs!

(b) QFT calculation (Newton in Minkowski) of graviton emmision rate by axions Saikawa+Yamaguchi

Outline

- 1. reminders about axions (as cold dark matter)
- 2. How to distinguish axions from WIMPs?
 - Sikivie's answer
- 3. summary ? ? ? ? ? ?
- 4. confusion clearing house
 - gravity, thermalisation and all that...
- 5. calculate something
 - in classical field theory: axion viscosity due to gravitational interactions
- 6. discussion

QCD Lagrangian :
$$-\frac{1}{4g^2}F^A_{\mu\nu}F^{\mu\nu A}$$
 $A:1..8$

Pospelov, Ritz

• QCD instantons generate θ ... how to make it unobservable?

Pospelov, Ritz

• QCD instantons generate θ ... how to make it unobservable? Recall(!), the chiral anomaly :

 $\partial_{\mu} j_5^{\mu} \propto F \widetilde{F}$

Pospelov, Ritz

• QCD instantons generate θ ... how to make it unobservable? Recall(!), the chiral anomaly says chiral rotn through η gives:

 $\delta \mathcal{L} \propto \eta \partial_{\mu} j_5^{\mu} \propto \eta F \widetilde{F}$

Pich deRafael Pospelov, Ritz

• QCD instantons generate θ ... how to make it unobservable? Recall(!), the chiral anomaly says chiral rotn through η gives:

$\delta \mathcal{L} \propto \eta \partial_{\mu} j_5^{\mu} \propto \eta F \widetilde{F}$

 \Rightarrow add new particles to the SM to obtain a global chiral $U_{PQ}(1)$

Peccei Quinn

QCD Lagrangian :
$$-\frac{1}{4g^2} F^A_{\mu\nu} F^{\mu\nu A} - \frac{\theta}{4g^2} F^A_{\mu\nu} \widetilde{F}^{\mu\nu A} \qquad A: 1..8, \quad \widetilde{F}^{\mu\nu} = \varepsilon^{\alpha\beta\mu\nu} F_{\alpha\beta}$$
$$\stackrel{(\vec{E}^2 + \vec{B}^2)}{= \vec{E} \cdot \vec{B}} \qquad)$$
$$\bullet \ \theta \text{ is CPV} - \text{neutron edm} \Rightarrow \theta \lesssim 10^{-10} \qquad Pich \ \text{deRafael}_{Pospelov, \ Ritz}$$

• QCD instantons generate θ ... how to make it unobservable? Recall(!), the chiral anomaly says chiral rotn through η gives:

 $\delta \mathcal{L} \propto \eta \partial_{\mu} j_5^{\mu} \propto \eta F \widetilde{F}$

⇒ add new particles to the SM to obtain a global chiral $U_{PQ}(1)$ SSB the U(1) at $f_{PQ} \gtrsim 10^8$ GeV : $\rho = f_{PQ} e^{i\phi} / \sqrt{2}$ ⇒ goldstone $a = f_{PQ} \phi \simeq$ only NP at accessible energies ([a] = m)

mixes to pion :
$$m_a \sim \frac{m_\pi f_\pi}{f_{PQ}} \simeq 6 \times 10^{-5} \frac{10^{11} \text{ GeV}}{f_{PQ}} \text{ eV}$$

Srednicki NPB85

couplings to SM
$$\propto \frac{1}{f_{PQ}} \propto m_a$$

The Peccei-Quinn Phase Transition: SSB of the U(1) $\rightarrow f_{PQ}e^{ia/f_{PQ}}$ *a* random in $-\pi \rightarrow \pi$ from one horizon to next one string/horizon

The Peccei-Quinn Phase Transition: SSB of the U(1) $\rightarrow f_{PQ}e^{ia/f_{PQ}}$ *a* random in $-\pi \rightarrow \pi$ from one horizon to next one string/horizon

PQPT before inflation

 $a(x,t)\sim a_0(t)+\delta a(x,t)$, a_0 random (isocurvature) fluctuations on all scales one string in the U

The Peccei-Quinn Phase Transition: SSB of the U(1) $\rightarrow f_{PQ}e^{ia/f_{PQ}}$ *a* random in $-\pi \rightarrow \pi$ from one horizon to next one string/horizon

PQPT before inflation

 $a(x,t)\sim a_0(t)+\delta a(x,t)$, a_0 random (isocurvature) fluctuations on all scales one string in the U

inflation before PQPT

 $\langle a^2 \rangle_{U \ today} \sim \pi^2 f_{PQ}^2/3 \\ \delta \rho \sim \rho \ {\rm on \ horizon-scale}$ one string per horizon

The Peccei-Quinn Phase Transition: SSB of the U(1) $\rightarrow f_{PQ}e^{ia/f_{PQ}}$ *a* random in $-\pi \rightarrow \pi$ from one horizon to next one string/horizon

PQPT before inflation

 $a(x,t)\sim a_0(t)+\delta a(x,t)$, a_0 random (isocurvature) fluctuations on all scales one string in the U

inflation before PQPT

 $\langle a^2 \rangle_{U \ today} \sim \pi^2 f_{PQ}^2/3$ $\delta \rho \sim \rho$ on horizon-scale one string per horizon

QCD Phase Transition ($T \sim 200 \text{ MeV}$): strings go away (radiate axions $\Rightarrow f_{PQ} \lesssim \text{few 10}^{11} \text{ GeV}$) $m_a(t): 0 \rightarrow f_\pi m_\pi / f_a$. When $m_a > H$: $\ddot{a} + 3H\dot{a} - \nabla^2 a + m_a^2 a = 0 \qquad \Rightarrow a(x,t) \simeq \frac{a(t_{QCDPT})}{R^{3/2}(t)} e^{i(mt - xH_{QCDPT})}$ $\Rightarrow \rho_a(t) = m_a^2 a^2 \simeq \frac{m^2 a^2(t_{QCDPT})}{R^3(t)}$

redshifts like CDM — solution to strong CP problem is a DM candidate!

$$m_a \sim \frac{m_\pi f_\pi}{f_{PQ}} \simeq 6 \times 10^{-5} \frac{10^{11} \text{ GeV}}{f_{PQ}} \text{ eV}$$
 couplings to SM $\propto \frac{1}{f_{PQ}}$

cosmology: for PQPT after inflation avoid isocurvature bds, have strings, interesting wrt Sikivie axion field oscillations + (cold) axion particles from string decay not overclose U:

$$\rho_a \sim m_a^2 f_{PQ}^2 \quad \text{, redshifts once } m_a > H \quad \Rightarrow \quad m_a \gtrsim 10^{-4} \text{ eV} \quad (f_{PQ} \lesssim 10^{11} \text{ GeV})$$

(PQ before inflation can have smaller m_a by tuning $a \ll f_{PQ}$)

$$m_a \sim \frac{m_\pi f_\pi}{f_{PQ}} \simeq 6 \times 10^{-5} \frac{10^{11} \text{ GeV}}{f_{PQ}} \text{ eV}$$
 couplings to SM $\propto \frac{1}{f_{PQ}}$

cosmology: for PQPT after inflation avoid isocurvature bds, have strings, interesting wrt Sikivie axion field oscillations + (cold) axion particles from string decay not overclose U:

$$\rho_a \sim m_a^2 f_{PQ}^2 \quad \text{, redshifts once } m_a > H \quad \Rightarrow \quad m_a \gtrsim 10^{-4} \text{ eV} \quad (f_{PQ} \lesssim 10^{11} \text{ GeV})$$

(PQ before inflation can have smaller m_a by tuning $a \ll f_{PQ}$)

searches: $aF\widetilde{F} \Rightarrow$ axion conversion to photon in a \overrightarrow{B} field ...resonant in a cavity. ADMX: CDM axions, sensitive to $10^{-6} < m_a < 10^{-5}$ eV CAST: axions from the sun, sensitive $0.1 \lesssim m_a < \text{eV}$

stellar energy loss: (upper bd on cplg)

$$m_a \lesssim 10^{-2} \text{ eV}$$
 $(f_{PQ} \gtrsim 10^9 \text{ GeV})$

 $10^{-2} \text{ eV} \gtrsim m_a \gtrsim 10^{-4} \text{ eV}$

The axion as a Cold Dark Matter candidate

- expand the U the same
- grow large scale linear fluctuations the same $(P \sim \sigma \sim 0...)$

Ratra, Hwang+Noh

...at the QCD PT, axion energy density inherits adiabatic fluctuations in plasma...

 \Rightarrow How to tell WIMPs from axions?

to tell axions from WIMPs?

- expand the U the same
- grow large scale linear fluctuations the same
- ?? could non-linear structure formation be different?? (Umm... non-linear/N-body is hard!)

Sikivie:

- 1. axions form a Bose-Einstein Condensate (= almost all axions in lowest energy mode...the case for PQPT before inflation)
- 2. BEC can support vortices (?WIMP halo not?)
- 3. vortices allow caustics in the galactic DM distribution \Leftrightarrow axion DM signature? BEC galactic halos: Rindler-Daller+Shapiro

to tell axions from WIMPs?

- expand the U the same
- grow large scale linear fluctuations the same
- ?? could non-linear structure formation be different?? (Umm... non-linear/N-body is hard!)

Sikivie:

1. axions form a Bose-Einstein Condensate (= almost all axions in lowest energy mode...the case for PQPT before inflation)

Suppose PQ PT after inflation.

The classical axion field can be represented as a coherent state of axion particles (of momentum $\lesssim H_{QCDPT}$).

to tell axions from WIMPs?

- expand the U the same
- grow large scale linear fluctuations the same
- ?? could non-linear structure formation be different?? (Umm... non-linear/N-body is hard!) Sikivie:
- 1. axions form a Bose-Einstein Condensate (= almost all axions in lowest energy mode...the case for PQPT before inflation)

Suppose PQ PT after inflation. The classical axion field can be represented as a coherent state of axion particles (of momentum $\leq H_{QCDPT}$). QFT rate for axions (momentum \vec{k}) to emit gravitons:

$$i\frac{\partial \hat{n}_k}{\partial t} = \left[\hat{H}_{int}, \hat{n}_k\right] \simeq \frac{G_E}{H(t)^2}\rho_a^2 \gg H(t)n_k \qquad \qquad \text{Saikawa+Yamaguchi}$$

(evaluated in coherent state \Leftrightarrow classical field caln.)

Sikivie interprets as gravitational thermalisation rate: hugely occupied low- \vec{p} modes, equilibrium after $T_{\gamma} \lesssim \text{keV}$, $\rightarrow \text{BE}$ condensate.

But are some of those gravitons expanding the U, and some growing fluctuations? *Why is that a thermalisation rate*??

Summary

1. Axions = motivated DM candidate — how to confirm/distinguish from WIMPs?

- 1- find axion in terrestrial searches (CAST, ADMX...)
- 2- are axions different from WIMPs in structure formation? Axions can bose-einstein condense...
 - ...selon Sikivie, they do form BEC due to "gravitational thermalisation"!

(...but is that gravitational interaction rate a thermalisation rate?)

galactic halo of bose-einstein condensate could have observable caustics in x-space density

- 2. I learned in kindergarten: New Physics is HEAVY... $\Rightarrow m_{\nu}$ from seesaw, DM is a WIMP
 - \Rightarrow some people model build, and phenomenologists do Effective Field Theory...

But maybe New Physics is light? m_{ν} is Dirac and DM is the axion?

• what is the equivalent of EFT for NP that is light and feebly coupled?

Outline

- 1. reminders about axions (as dark matter)
- 2. summary = ? ? ? ? ? + discussion ?
- 3. confusion clearing house
 - ...but the density is not homogeneous!
 - eqns of motion: axion field vs density fluctuations
 - thermalisation in closed unitary systems what is the bath? (go to 4)
 - particles vs fields?
 - gravity and the second law can gravity "thermalise" anything?
 - whats a Bose-Einstein condensate? in particle physics, field theory?
- 4. calculate something
 - find, in linearised Einstein's Eqns, gravitational interactions *not* contributing to inhomogeneity growth

```
\Leftrightarrow anisotropic stress = viscosity
```

• estimate diffusion length due to gravitational viscosity...verry short

Inhomogeneities are $\mathcal{O}(1)$ on the QCD horizon scale

 $a(\vec{x},t)$ random from one horizon(~ 5 km) to next; $\rho_a(\vec{x},t) \simeq m_a^2 a^2(\vec{x},t)$

 \Rightarrow its *not* a spatially homogeneous distribution of particles various momenta

Inhomogeneities are $\mathcal{O}(1)$ on the QCD horizon scale

 $a(\vec{x},t)$ random from one horizon (~ 5km) to next; $\rho_a(\vec{x},t) \simeq m_a^2 a^2(\vec{x},t)$

Not a problem for LSS (on scales $\gtrsim 10^{10}$ longer!); field smoothes on averaging...

Inhomogeneities are $\mathcal{O}(1)$ on the QCD horizon scale

 $a(\vec{x},t)$ random from one horizon(~ 5km) to next; $\rho_a(\vec{x},t) \simeq m_a^2 a^2(\vec{x},t)$

But how can axions form a *homogeneous-on-QCD-horizon-scale* bose-einstein condensate = zero mode of field? ??

 $v = H_{QCDPT}/m_a \lesssim 10^{-6}c...$ not "free-stream" QCD-horizon distance before t_{eq} :

$$d(t) = \int^t \frac{H_{QCDPT}}{m_a R(t')} dt' \sim \frac{H_{QCDPT}}{m_a} \frac{1}{H(t)R(t)} = \frac{R(t)}{m_a} \ll \frac{R(t)}{H_{QCDPT}}$$

(RD U, R(t) = 1@QCDPT)

Eqns of motion — axion field vs density fluctuations?

Inside the horizon, can study axion evolution by

1. get Eqns of motion of the field, from $T^{\mu\nu}_{\ ;\nu} = 0$ $\ddot{a} + 3H\dot{a} - \nabla^2 a + m_a^2 a = -2m^2 a\phi$

and combine with Poisson: $-\nabla^2 \phi = 4\pi G_E \delta \rho$. (This corresponds to single graviton exchange) But $\delta \rho_a \propto a^2$, so its non-linear.

2. Or get Eqns of motion for a fluid with scalar perturbations from $T^{\mu\nu}_{;\nu} = 0$, and combine with Poisson:

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi\rho\delta + \frac{c_s^2}{R^2(t)}\nabla^2\delta = 0$$

for $\delta = \delta \rho / \rho$. Can *solve* (in fourier space).

Are these the same thing? From 1), can get rate for axions (labelled \vec{k}) to emit a graviton of any wavelength. From 2), learn that gravitons of wavelength \vec{p} grow $\delta(\vec{p}, t)$. where $\delta(\vec{p}, t) \sim \sum_{q} a(q + k, t)a^{*}(q, t)$ is non-lin in a Is it the same gravitons? thermalisation in closed unitary systems?

entropy =
$$\sum_{states \ s} P_s \ln P_s$$
 increases

- unitary evolution creates no entropy ⇔ NO entropy generation in closed systems
 … BUT... can calculate "effective" thermalisation: a subset of observables
 evolve towards equilibrium expectations
 ⇒ the "rest" of the system is the bath??
- ex: couple two SHOs. Solve one, substitute into Eqns of second, and find dissipation.
- ... $K \bar{K}$ evolution is non-unitatry, because not also follow $2\pi \ 3\pi$ states...
- $? \Rightarrow divide axions+gravity into$
- 1. U expansion + structure growth
- 2. other fluctuations which are the bath?

Looking for gravitational interactions that aren't growing fluctuations

(suppose that density fluctuations grow on scale H_{QCDPT}^{-1} (= 5 km comoving)) **anisotropic stress** = $T_j^i \sim (1 - 2\phi) \frac{p_i p_j}{m^2} \rho_a$ (ϕ is Newtonian pot: $\nabla^2 \phi = -4\pi G_E \delta \rho$)

- gauge invariant
- not included in obtaining eqns for density fluc growth $(small: p \sim H_{QCDPT} \ll m_a)$
- leading contribution is axion "free-streaming" (neglect)

...equate to viscosity of imperfect fluid

 \Rightarrow (physical) damping scale for axion density fluctuations, due to "gravitational viscosity": (Jeans length = $1/\sqrt{H(t)m_a}$; density fluc on shorter distances oscillate due to pressure)

$$\ell_{damp}^2(t) < \ll \frac{1}{H(t)m_a}$$

This is \ll QCD horizon scale:

$$\frac{1}{H(t)m_a} \ll \left(\frac{1}{H_{QCDPT}} \frac{T_{QCDPT}}{T}\right)^2 = \frac{1}{H(t)H_{QCDPT}}$$

gravity and the second law

- 1. undergraduate memories say that gravitational collapse of a gas cloud to a star respects the second law...
- 2. story of $\Omega_{baryon} = 1 \text{ U}$
 - (a) quasi-homogeneous dust clouds collapse
 - (b) ...generations of stars, supernovae, black holes...
 - (c) proton decays...
 - (d) venerable homogeneous and isotropic U full of photons and gravitons
- 3. so gravitational thermalisation of axions will happen. But does it happen before the U a year old?

Particles vs fields

Develop field operator

$$\hat{a}(t,\vec{x}) = \frac{1}{[R(t)L]^{3/2}} \int \frac{d^3k}{(2\pi)^3} \Big\{ \hat{b}_{\vec{k}} \frac{\chi(t)}{\sqrt{2\omega}} e^{i\vec{k}\cdot\vec{x}} + \hat{b}_{\vec{k}}^{\dagger} \frac{\chi^*(t)}{\sqrt{2\omega}} e^{-i\vec{k}\cdot\vec{x}} \Big\}$$

then write the coherent state:

$$|a(\vec{x},t)\rangle \propto \exp\left\{\int \frac{d^3p}{(2\pi)^3} a(\vec{p},t) b_{\vec{p}}^{\dagger}\right\} |0\rangle$$

which satisfies $\hat{b}_{\vec{q}}|a(\vec{x},t)\rangle = a(\vec{q},t)|a(\vec{x},t)\rangle$ (can check $\hat{b}_{\vec{q}}\{1+\int \frac{d^3p}{(2\pi)^3}a(\vec{p},t)b_{\vec{p}}^{\dagger}\}|0\rangle = a(\vec{q},t)|0\rangle$) where the classical field is

$$a(t,\vec{x}) = \frac{1}{[R(t)L]^{3/2}} \int \frac{d^3k}{(2\pi)^3} \Big\{ a(\vec{k},t) \frac{\chi(t)}{\sqrt{2\omega}} e^{i\vec{k}\cdot\vec{x}} + a^*(\vec{q},t) \frac{\chi^*(t)}{\sqrt{2\omega}} e^{-i\vec{k}\cdot\vec{x}} \Big\}$$

1. for particles in stat mech

. . .

2. in equilibrium thermal field theory

Kapusta, Haber+Weldon

scalar field at finite T with density of conserved charge n_Q . Quadratic term in potential is $\propto (m^2 - \mu^2 + \mathcal{O}(T^2))\phi^{\dagger}\phi$. For low T, cannot accomodate charge density in the plasma \Rightarrow phase transtion

$$m_Q = m \langle \phi \rangle^2 + \int \frac{d^3k}{(2\pi)^3} (n_k - n_{\bar{k}})$$

3. in non-equilibrium field theory

Calzetta+Hu Berges+Serreau

Occurs for O(N) scalar theories. Analytically using 2PI effective action. And numerically...overpopulation of low- \vec{p} modes (like for axions!), can migrate to the IR!

does dn_k/dt of S+Y give this? I can't tell...

what is quantum ? Classical?

Can obtain, in classical field theory

$$i\frac{\partial}{\partial t}|\widetilde{a}(\vec{q},t)|^2 \simeq -16\pi m G_E \sum_k \frac{R^2(t)}{|\vec{k}|^2} \delta\rho(\vec{k},t) \left\{ \widetilde{a}^*(\vec{q}+\vec{k},t)\widetilde{a}(\vec{q},t) - \widetilde{a}^*(\vec{q},t)\widetilde{a}(\vec{q}-\vec{k},t) \right\}$$

... quantum in the SY result is to identify $|\tilde{a}(\vec{q},t)|^2 / \sum_p |\tilde{a}(\vec{p},t)|^2$ as a number density of axion particles?

The distribution of \hbar s in the Lagrangian depends on whether the classical limit should be fields or particles— for field, can take [m] = 1/L. So to define the particle number of a classical field configuration requires \hbar .