

Latest from ATLAS At the end of an Uncommon Year

Dave Charlton University of Birmingham

2012 Annual UK Theory Meeting

> Durham, 17 December 2012

http://cern.ch/atlasresults

Outline

Performance of the LHC and ATLAS

Measurements

- QCD processes
- Dibosons
- Top

Beyond the Standard Model

- Exotica
- SUSY

The new boson

- A retrospective from July
- What we've learned since

To date ATLAS has submitted 225 papers with collision data ...and 435 conference notes with preliminary results

I can only mention a rather small subset...!

Performance

Recorded Data over the Three Years of "Run-1"

LHC Performance in 2012

LHC achieved peak performance early in the year and sustained it

- Peak $L = 7.7 \times 10^{33} \text{ s}^{-1} \text{ cm}^{-2}$
- Max *L*/fill: 237 pb⁻¹
- Weekly record: 1350 pb⁻¹
- Longest stable beams: 23 h
- Fastest turn-around between stable beams:
 2.1 h
- Best weekly data-taking efficiency: 92 h (55%)

At $L = 7 \times 10^{33} \text{ s}^{-1} \text{ cm}^{-2}$ and 8 TeV *pp* collisions, 560 Higgs bosons of mass 125 GeV are produced in ATLASper hour

Or: every 45 min. 1 $H \rightarrow \gamma \gamma$, need ~2 typical 160 pb⁻¹ fills to produced one $H \rightarrow 4\ell$ ($\ell = e/\mu$)

Luminosity Precision - van der Meer Scans

Absolute calibration comes from special fills with beam-separation scans in x & y

Calibration transported to all fills using a range of luminosity-measuring detectors and algorithms

Preliminary luminosity error for 2011 currently 3.6%, goal ~2%

Day in 2011

Pileup

Huge experimental challenge in 2011 and 2012 from multiple interactions per beam crossing, pileup

Pileup was so high because LHC was running with a bunch spacing of 50ns not the design 25ns

Mean Number of Interactions per Crossing

LHC and experiment design is for a peak pileup of ~25 events/crossing

Regularly exceeded in 2012

Reducing the Impact of Pileup

ATLAS is designed for high levels of pileup, up to a peak of ~25 interactions per crossing

Example: calorimeter pulse shape

Intensive work has allowed impact of pileup to be reduced by the design of pileup-insensitive selections

Note: number of reconstructed primary vertices is ~ 60% number of number of interactions per crossings

 E_{T}^{miss} resolution vs pile-up in Z \rightarrow µµ events before and after pile-up suppression using tracking information

Data-Taking Efficiency and Data Quality

The data available for analysis is less than that delivered by the LHC due to data-taking inefficiency, <u>and</u> data quality losses

ATLAS (and CMS) have unprecedentedly high efficiencies for hadron collider experiments - takes a huge amount of constant care and attention (many people on-call 24/7)

ATLAS p-p run: April-Sept. 2012											
Inner Tracker			Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid	
100	99.3	99.5	97.0	99.6	99.9	99.8	99.9	99.9	99.7	99.2	
All good for physics: 93.7%											

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at vs=8 TeV between April 4th and September 17th (in %) – corresponding to 14.0 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Typically ~88% of data delivered by LHC is used for physics analysis

Triggering

This year the rather stable peak luminosity allowed a stable trigger menu ATLAS subdivides triggered events into a few large data streams In 2012 include "delayed streams" for reconstruction in 2013

11

Main 2012 Triggers

Excluding the delayed streams

Signature	Offline selection	Trigger L1	selection EF	L1 Peak (kHz) Lpeak= 7×1033	EF Ave (Hz) Lave= 5×1033
Single Leptons	Single muon <i>pT</i> > 25 GeV	15 GeV	24 GeV	8	45
single leptons	Single electron $pT > 25$ GeV	18 GeV	24 GeV	17	70
	2 muons <i>pT</i> > 6 GeV	2 × 6 GeV (also 2mu4 barrel only)	2 × 6 GeV	3	2
Two leptons	2 muons <i>pT</i> >15 GeV 2 muons <i>pT</i> > 20,10 GeV	2 × 10 GeV 15 GeV	2 × 13 GeV 18,8 GeV	1 8	5 8
	2 electrons, each <i>pT</i> > 15 GeV	2 × 10 GeV	2×12 GeV	6	8
	2 taus <i>pT</i> > 45, 30 GeV	15,11 GeV	29,20 GeV	12	12
Two photons	2 photons, each <i>pT</i> > 25 GeV 2 loose photons, <i>pT</i> > 40,30 GeV	2 × 10 GeV 12,16 GeV	2 × 20 GeV 35, 25 GeV	6 6	10 7
Single jet	Jet <i>pT</i> > 360 GeV	75 GeV	360 GeV	2	5
<i>ET</i> miss	ETmiss > 120 GeV	40 GeV	80 GeV	2	17
Multi-jets	5 jets, each <i>pT</i> > 60 GeV 6 jets, each <i>pT</i> > 50 GeV	4×15 GeV	5 × 55 GeV 6 × 45 GeV	1	8
<i>b</i> -jets	b + 3 other jets pT > 45 GeV	4 × 15 GeV	4 × 45 GeV + <i>b</i> -tag	1	4
TOTAL				< 75	~400 (avg)

One Slide on Computing

The Worldwide LHC Computing Grid is crucial to be able to analyse these huge data sets and to generate the necessary Monte Carlo statistics

It works so well that we can produce selected results very quickly, <4 weeks, from datataking to results, in selected cases

Pileup imposes a big challenge here too: ~triples CPU requirement for reconstruction

Measurements

Standard Model Measurements

A wealth of high precision measurements are possible, and in progress - detailed and intricate studies which need careful analysis

More complex topologies are important backgrounds for searches - validate MC models in more inclusive regions

Differential $\Upsilon(1S, 2S, 3S)$ Measurements

Dimuon final state with $p_{\tau}(\mu) > 4 \text{ GeV}, |\eta^{\mu}| < 2.3$

- Comparison of the three states interesting because of contributions from direct production and feed-down from decays of higher mass states (Υ 's, χ 's)
- Comparison with models reveals problems at high p_{τ} •

arXiv:1211.1255

Inclusive dijets

Jet differential cross-sections measured over 0.02 < p_{τ} < 1.5 TeV in PRD86 (2012) 014022

Double-differential measurements for high-mass dijets with full 7 TeV data sample $(m_{12}, y^*=|(y_1+y_2)/2|)$

Fully corrected to particle level, covering 0.26 < m_{12} < 4.6 TeV, y* < 2.5

Reference calculation NLOJET++ with CT10 pdfs

POWHEG with PYTHIA6 AUET2B tune does best

ATLAS-CONF-2012-021

18

Z Differential Cross-Section

Measurement of Z/γ φ_n^* distribution

- φ_n^* is related to the scattering angle of leptons wrt. beam
- Depends on lepton angles only, more precisely measured than momenta
- φ_{η}^{*} correlated to $p_{\tau}(Z)/m_{ll}$ - probes same physics

ResBos provides best description (within 4%), large deviations for POWHEG / MC@NLO

W and Z in Association with Heavy Flavour

Measurement of W + b-jets fiducial ($p_{\tau} > 25 \text{ GeV}$, $|\eta| < 2.1$) and differential

cross sections

Fiducial cross section within 1.5σ of theory prediction p_{τ} spectrum a little harder in data, but compatible with generators

Dibosons - yy

Diboson production is a common theme - for measurements, BSM searches and the Higgs...

Example of differential cross section measurement: yy (7 TeV, 4.9 fb⁻¹)

Rescaled leading-order parton shower generators describe data better than higherorder fixed-order generators (DIPHOX, 2γNNLO) which lack soft gluon resummation Powerful test of perturbative QCD and quark fragmentation

"Direct" quark annihilation (dominant: $O(\alpha^2)$)

Collinear fragmentation, $O(\alpha^2 \alpha_s)$, but non-isolated γ

Box diagram, $O(\alpha^2 \alpha_s^2)$, but due to gg luminosity comparable to LO terms

Dibosons - yy

Diboson production is a common theme - for measurements, BSM searches and the Higgs...

Example of differential cross section measurement: yy (7 TeV, 4.9 fb⁻¹)

Rescaled leading-order parton shower generators describe data better than higherorder fixed-order generators (DIPHOX, 2γNNLO) which lack soft gluon resummation Powerful test of perturbative QCD and quark fragmentation

"Direct" quark annihilation (dominant: $O(\alpha^2)$)

Collinear fragmentation, $O(\alpha^2 \alpha_{s})$, but non-isolated γ

Box diagram, $O(\alpha^2 \alpha_s^2)$, but due to gg luminosity comparable to LO terms

Dibosons - Wy and Zy

Example differential cross-section measurements: Wy, Zy (7 TeV, 4.6 fb⁻¹) Fully corrected to respective fiducial regions

MCFM (NLO, parton level) undershoots the inclusive cross-section Scaled LO ALPGEN/SHERPA with multiple quark/gluon emission in PS do better Similar observation as for $\gamma\gamma$

Dibosons - WW, WZ and ZZ

Example differential cross section measurements: WW, ZZ (7 TeV, 4.6 fb⁻¹)

NLO generators provide a good description of the data with these statistics, also for the mass spectra. Same conclusion for WZ EPJC72 (2012) 2173

Top Pair Cross-Section

Large variety of 7 TeV measurements public: 0/1/2-lepton (e, μ , τ) — well-described by calculations Measurement of 8 TeV cross-section in 1-lepton channel (5.8 fb⁻¹) using likelihood template fit ATLAS-CONF-2012-149

tt+jets

Significant background to more complex search topologies (e.g. SUSY cascade decay chains)

Jet multiplicity in fiducial region in $t\bar{t}$ production (ℓ +jets) at 7 TeV (4.7 fb⁻¹)

Modelling of tt events

Rapidity gap fraction vs. |y| helps control modelling of ISR/FSR \rightarrow targets large systematics on m_{top} measurement

Gap fraction: fraction of selected $t\bar{t}$ events which do not have a jet with $p_{\tau} > Q_{\rho}$ in the |y| interval

Generally good description for |y| < 1.5, except MC@NLO (too little radiation) For large |y| too much jet activity predicted 27

Searches

BSM Searches - Introduction

Comprehensive programme of measurements provides a solid basis for searches for physics Beyond the Standard Model

Nonetheless, generally we work hard to reduce any systematics from Monte Carlo modelling - very extensive use of data-driven background estimates using signal-suppressed control regions \rightarrow allows to search before full programme of measurements is done!

MC typically is used to model smaller backgrounds, and to understand systematic errors coming from mapping control regions to background estimates in signal regions

BSM Searches - Introduction

A huge array of searches have been carried out, including:

- Extra dimensions
- Excited vector bosons
- Contact interactions
- Leptoquarks
- New heavy quarks
- Excited fermions
- Technicolor

- Strongly produced q, g
- Gluino-mediated t, b production
- Direct \widetilde{t} , \widetilde{b} production
- Electroweak SUSY production
- Long-lived particles
- R-parity violating SUSY signatures
- •

While a lot of the simpler signatures have been well explored at $\sqrt{s=8}$ TeV, much work is ongoing on more complex topologies

"Leave no stone unturned"

Multijet Topologies - Dijets

In addition to limits on the benchmark q* model, also placed limits on generic gaussian resonances: 95% CL upper limits on $\sigma \ge A$ for $\sigma_{_G}/m_{_G} = 0.07$, 0.10 and 0.15 The highest-mass central dijet event. The two central high- p_{τ} jets have an invariant mass of 4.69 TeV

Multijet Topologies - Jet Substructure

Search for boosted hadronically decaying objects by looking at jet substructure

Two methods identify merged hadronic top decays

- HEP-Top-Tagger uses substructure of "fat jets"
- Top-Template-Tagger uses calorimeter templates

Leptophobic topcolour Z' excluded up to 1 TeV at 95% CL

Sequential Z' and W' in Leptonic Channels

$Z' \rightarrow \ell \ell$ search extended with 8 TeV data

Sequential-SM Z' m(Z'_{SSM}) > 2.49 TeV at 95% CL E6-motivated models: m(Z') > 2.09 to 2.24 TeV at 95% CL

Also: new 7 TeV dilepton limits on *llqq* contact interaction between 9.5 and 12.9 TeV arXiv:1211.1150

W'→ℓv search - limits from $m_{\tau}(\ell, v) = \int (2p_{\tau}^{\ell} E_{\tau}^{miss} (1 - \cos \varphi_{\ell v}))$

Sequential W' m(W') > 2.55 TeV at 95% CL Chiral W* m(W*) > 2.42 TeV at 95% CL

Hunting for other Peaks in ℓ/γ States

Prompt like-sign leptons powerful probe for many forms of new physics For compositeness scale $\Lambda = m(l^*)$: exclude excited leptons < 2.2 TeV at 95% CL

Other searches in trileptons, high-mass diphotons, $\ell + \tau$, $\tau \tau$

35

Still Seeking SUSY...

Extensive and deep programme of SUSY searches at ATLAS

Strong Production of Squarks and Gluinos

"Natural" Models - evading the absence of \widetilde{q} and \widetilde{g}

In these models, the lightest squarks are \tilde{t}/\tilde{b} , gluinos possibly too heavy, gauginos may be accessible - but the Higgs mass can be stabilised

Lower cross-sections and larger SM backgrounds require dedicated searches

Systematic and comprehensive set of searches

"Natural" Models - evading the absence of \widetilde{q} and \widetilde{g}

Dedicated searches for EW slepton/gaugino production in multilepton final states published this summer; 8 TeV 13 fb⁻¹ update of 3ℓ search

arXiv:1208.2884, arXiv:1208.3144, ATLAS-CONF-2012-154

Interpretation in simplified models but also in a phenomenological MSSM model (less "naïve")

Direct Sbottom Production

Direct sbottom production can lead to $2b + E_{T}^{miss}$ (shown here) or also to multilepton + jets + E_{T}^{miss} final states

40

ĥ/ī̇́t

b/t

 \tilde{X}_{1}^{0}

b″/ť*

6/f

Ρ

 $\widetilde{b}_1 - \widetilde{\overline{b}}_1$ production, $\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$

Direct Stop Production

Similar final states as top pairs, searches use 0ℓ, 1ℓ, 2ℓ final states and depend on sparticle masses and stop decays

New 8 TeV 13 fb⁻¹ results in 1ℓ and 2ℓ final states, optimising for $\tilde{t} \rightarrow t + \chi^0$ and $\tilde{t} \rightarrow b + \chi^+$ decays

5 papers on 7 TeV: arXiv:1208.4305, arXiv:1209.2102, arXiv:1209.4186, arXiv:1208.2590, arXiv:1208.1447

ATLAS-CONF-2012-166, ATLAS-CONF-2012-167

Direct Stop Summary - Status at SUSY12 this summer

Direct Stop Summary

Also, strongly enhanced sensitivity for lower mass stop decaying into b + chargino There is still room at low mass – remember: **our models are simplified**

Looking more generically for Dark Matter?

An alternative approach: search directly for production on invisible WIMPs in proton-proton collisions

Exploit "ISR technique"

arXiv:1210.4491, ATLAS-CONF-2012-147

Signature: mono-jet events We need the hard ISR jet to trigger the event Interpretations in variety of models: extra dimensions, WIMP, gravitinos

Looking more generically for Dark Matter?

An alternative approach: search directly for production on invisible WIMPs in proton-proton collisions

Exploit "ISR technique"

arXiv:1210.4491, ATLAS-CONF-2012-147

Signature: mono-jet events We need the hard ISR jet to trigger the event Interpretations in variety of models: extra dimensions, WIMP, gravitinos

R-Parity Violating SUSY scenarios

Decays of the LSP in RPV models can lead to many leptons, jets and/or resonances Dedicated programme to assess the extremely broad phenomenology

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

	Large ED (ADD) : monoiet + E	$L = 4.7 \text{ fb}^{-1}$ 7 ToV (1210 440 1)	4371	ω Μ_ (δ=2)	
	Large ED (ADD): monophoton + E	L=4.7 ID , 7 IEV [1210.4491]	4.37 M (8=	2)	
\$	Large ED (ADD) : diphoton & dilepton m	L=4.0 ID , 7 Iev [1203.4025]	1.33 TEV MD (0-	$M_{\rm e}$ (HI Z δ =3 NLO)	ATLAS
No	UED : diphoton + E_{-}	L=4.9 fb ⁻¹ 7 ToV [ATLAS CONE 2012.072]	1 41 Tay Compact so	rale \mathbb{R}^{-1}	Preliminary
SI	$S^{1}/Z = D$: dilepton m	L=4.8 fb , 7 fev [A1LA3-CONF-2012-072]	4.71		
eu	RS1 : diphoton & dilepton, m	L=4.7.6.0 (b ⁻¹ , 7 ToV [1203.2333]	2.22 ToV Gravi	iton mass $(k/M = 0.1)$	
ï.	RS1 : 77 resonance m	L=4.7-5.0 ID , 7 TeV [1210.6569]	RAE Cover Graviton mass (k/h	M = 0.1	
0	RS1: WW resonance m	L=1.010 , 7 1ev [1203.0716]	1 22 Tayl Graviton mass	Ldt	$= (1.0 - 13.0) \text{ fb}^{-1}$
tra	RS a \rightarrow tt (BR=0.925) : tt \rightarrow 1+iets. m	L=4.7 fb ⁻¹ 7 ToV [ATLAS CONE 2012 126]	1.23 TeV Claviton mas	$\int dt$	(1.0 10.0)15
i i i	$\Delta DD BH (M (M = 3) : SS dimuon M$	L=4.7 ID , 7 IEV [ATLAS-CONF-2012-130]	1.5 TeV 9 _{KK} (S=6)		s = 7, 8 TeV
-	ADD BH $(M_{TH}/M_D=3)$: leptons + jets Σp	L=1.5 fb , 7 fev [1111.0080]	1.25 TeV M _D (0-0)		
	Quantum black hole : dijet E (m_1)	L=1.0 fD , / lev [1204.4646]	1.5 IEV MD (0-0)	M (S-6)	
	dana contact interaction : 2(m)	L=4.7 fb , 7 lev [1210.1718]	4.11 Te		
77	gqqq contact interaction	L=4.8 fb , 7 TeV [ATLAS-CONF-2012-038]		7.8 lev A	notructive int)
0	uutt CL: SS dilepton + iots + Ε	L=4.9-5.0 fb , 7 TeV [1211.1150]	1	13.9 lev A (CC	instructive int.)
	$\frac{1}{7}$	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]			
	Z (SSM). /// _{ee/µµ}	L=5.9-6.1 fb , 8 TeV [ATLAS-CONF-2012-129]	2.49 IeV Z' m	nass	
	2 (SSM) : m _{rt}	L=4.7 fb , 7 TeV [1210.6604]	1.4 lev Z mass		
Ň	W (SSW). /// _{T,e/µ}	L=4.7 fb , 7 TeV [1209.4446]	2.55 TeV VV	mass	
	$W' \rightarrow (q, g - 1) \cdot m_{tq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	130 GeV VV mass		
	$W_R (\rightarrow tb, SSW) . III_{tb}$	L=1.0 fb , 7 TeV [1205.1016]	1.13 lev VV mass		
	vv .m _{T,e/µ}	L=4.7 fb , 7 TeV [1209.4446]	2.42 lev VV	mass	
Q	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 GeV 1 gen. LQ mass		
Ē	Scalar LQ pair $(p=1)$: kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 gen. LQ mass		
	Scalar LQ pair (p=1) : kin. vars. in tt], tv]	L=4.7 fb ⁻ , 7 TeV [Preliminary]	538 GeV 3 gen. LQ mass		
KS	4 th generation : t't'→ WbWb	L=4.7 fb ⁻ , 7 TeV [1210.5468]	656 GeV [mass		
a	4 generation . D D (1 $_{5/3}$) \rightarrow WtWt New quark b' : b'b' \rightarrow Zb+X m	L=4.7 fb", 7 TeV [ATLAS-CONF-2012-130]	670 GeV D'(I 5/3) mass		
dr	New quark b : $DD \rightarrow ZD^+ \wedge, m_{Zb}$	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 4	0 GeV D'mass		
\geq	Top partner . $TT \rightarrow tt + A_0A_0$ (dilepton, M_1)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass (m(A ₀) < 100 GeV)	4/2	-)
Ve	Vector-like quark : UC, milvg	L=4.6 fb", 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (cha	arge -1/3, coupling $\kappa_{q0} = V/I$	n _o)
<u> </u>	Excited quarks in let resonance m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass (cha	rge 2/3, coupling $\kappa_{q0} = V/m$	a)
nit.	Excited quarks : r-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q" n	nass	
μŇ	Excited quarks : dijet resonance, m	L=13.0 fb ', 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV	q mass	
-	Techoi hodrone // STC) : dilepton m	L=13.0 fb", 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV In ma:	$ss(\Lambda = m(I^*))$	
	Techni-hadrons (LSTC) : dilepton, m _{ee/µµ}	L=4.9-5.0 fb", 7 TeV [1209.2535]	850 GeV $\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}))$	$(m_{\rm T}) - m(\pi_{\rm T}) = M_{\rm W}$	
	T,WZ	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV $\rho_{\rm T}$ mass $(m(\rho_{\rm T}) = m(\pi_{\rm T}) + m_{\rm T})$	$m_{\rm W}, m({\rm a_{\rm T}}) = 1.1 m(\rho_{\rm T}))$	
le/	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb , 7 TeV [1203.5420]	1.5 lev IN mass (m	$(vv_R) = 2 \text{ lev}$	
E	W_R (LRSW, no mixing): 2-lep + jets	L=2.1 fb ⁺ , 7 TeV [1203.5420]		mass $(m(N) < 1.4 \text{ lev})$	
0	Π_{L} (DY prod., BR($\Pi \rightarrow \Pi$)=1): SS ee ($\mu\mu$), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 4	09 GeV H mass (limit at 398 GeV for	, μμ)	
	Π_{L} (D1 plot, BR($\Pi \rightarrow e\mu$)-1). SS $e\mu$, $m_{e\mu}$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 37	GeV H ⁻ mass		
	Color octet scalar : dijet resonance, m	L=4.8 fb , 7 TeV [1210.1718]	1.86 TeV Scalar r	esonance mass	
		10 ⁻¹	1	10	10 ²
		10		Ma	
*0-1				ivia	33 SUAIC [ICV]

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)

				<u> </u>	
	MSUGRA/CMSSM : 0 lep + j's + ET mine	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV $\tilde{q} = \tilde{q}$ mass		
	MSUGRA/CMSSM : 1 lep + i's + E	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV q = q mass		
	Pheno model : 0 lep + i's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV $\tilde{\mathbf{Q}}$ mass $(m(\tilde{\mathbf{Q}}) < 2$ TeV, light $\overline{\tau}^0$)	1.18 TeV \tilde{q} mass $(m(\tilde{q}) < 2$ TeV, light $\tilde{\tau}^{\circ}$) ATLAS	
Jes	Pheno model : 0 lep + i's + $E_{T,mas}$	L=5.8 fb ⁻¹ . 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV α mass (m(α) < 2 TeV. light τ	Preliminary	
e search	Gluipo med $\tilde{\chi}^{\pm}(\tilde{a} \rightarrow a \bar{a} \tilde{\chi}^{\pm}): 1$ lep + i's + E	/ =4.7 fb ⁻¹ .7 TeV [1208.4688]	900 GeV $\tilde{\alpha}$ mass $(m(\bar{x}^0) < 200 \text{ GeV} m(\bar{x}^{\pm}) = \frac{1}{2}(m(\bar{x}^0) < 200 \text{ GeV} m(\bar{x}^{\pm}) = \frac{1}{$	1' m(7)+m(6))	
	GMSB(I,NI,SP) : 2 Ion(OS) + i's + F	$I = 4.7 \text{ fb}^{-1}$, 7 TeV [1208,4688]	1.24 TeV $\tilde{\mathbf{Q}}$ mass $(\tan \beta < 15)$		
	GMSB ($\bar{\tau}$ NLSP) : 1-2 τ + 0-1 lep + i's + E ^{T,miss}	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [1210 1314]	1.20 TeV $\tilde{\alpha}$ mass $(\tan\beta > 20)$	<u>c</u>	
Siv	GGM (bino NLSP) : $\gamma\gamma + E^{T,miss}$	$l = 4.8 \text{ fb}^{-1}$ 7 TeV [1209.0753]	107 TeV $\tilde{0} \text{ mass} (m(x^0) > 50 \text{ GeV})$	1 - 4 - 40 1 10 0 4-1	
Inclu	GGM (wino NLSP) : γ + lep + $E^{T,miss}$	$L = 4.0 \text{ fb}^{-1}$ 7 TeV [ATLAS, CONE 2012, 144]	fin Gav a mass	$Lat = (2.1 - 13.0) \text{ fb}^{-1}$	
	GGM (higgsino-bino NLSP) : $\gamma + b + E^{T,miss}$	1 = 4.0 fb ⁻¹ 7 ToV (4244 4467)			
	GGM (higgsino NI SP) : $7 + iete + E^{T,miss}$	L=4.0 ID , 7 IEV [1211.1107]		S = 7, 6 lev	
	Gravitino I SP : 'monoiot' + E	L=5.8 fb , 8 feV [ATLAS-CONF-2012-152]			
	Gravitino LSP . monojet + ET.miss	L=10.5 fb , 8 TeV [ATLAS-CONF-2012-147]	645 GeV F Scale (m(G) > 10 eV)		
sq.	$g \rightarrow bb\chi$ (virtual b): 0 lep + 3 b-J's + $E_{T,miss}$	L=12.8 fb ', 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV g mass $(m(\chi_1) < 200 \text{ GeV})$		
- u	$g \rightarrow tt \chi_1$ (virtual t) : 2 lep (SS) + j's + $E_{T,miss}$	L=5.8 fb", 8 TeV [ATLAS-CONF-2012-105]	850 GeV \underbrace{g}_{μ} (m(χ_{μ}) < 300 GeV)	8 TeV results	
gel	$\tilde{g} \rightarrow tt \tilde{\chi}_1$ (virtual t) : 3 lep + j's + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	860 GeV g mass $(m(\chi_1) < 300 \text{ GeV})$	o lev lesuits	
li g	$\tilde{g} \rightarrow t \tilde{\chi}_{\tilde{\chi}}$ (virtual t): 0 lep + multi-j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV $\tilde{g} \max_{mass} (m(\tilde{\chi}_1) \le 300 \text{ GeV})$	7 TeV results	
6 6	$\tilde{g} \rightarrow t t \tilde{\chi}$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV \hat{g} mass $(m(\chi_1) < 200 \text{ GeV})$		
	bb, b, $\rightarrow b\overline{\chi}$: 0 lep + 2-b-jets + $E_{\tau miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV b mass $(m(\chi^0) < 120 \text{ GeV})$		
rks ion	$_{\pm}$ bb, b, $\rightarrow t \overline{\chi}^{\pm}$: 3 lep + j's + $E_{\tau \text{ miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	405 GeV b mass $(m(\chi_1^{-1}) = 2 m(\chi_2^{-1}))$		
ual icti	tt (light), $t \rightarrow b \bar{\chi}^{\pm}$: 1/2 ¹ lep (+ b-jet) + $E_{T \text{ miss}}^{+1}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102]167 Ge	$t \text{ mass } (m(\overline{\chi}^0) = 55 \text{ GeV})$		
sd Do	tt (medium), $t \rightarrow b \tilde{\chi}^{\pm}$: 1 lep + b-jet + E_{χ} miss	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166]	160-350 GeV \tilde{t} mass $(m(\chi^0) = 0 \text{ GeV}, m(\chi^\pm) = 150 \text{ GeV})$		
n.	$\tilde{t}t$ (medium), $\tilde{t} \rightarrow b\tilde{\chi}^{\pm}$: 2 lep + E_{τ}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV \tilde{t} mass $(m(\chi^0) = 0 \text{ GeV}, m(\tilde{t}) - m(\chi^{\pm}) = 10 \text{ GeV})$		
ge ct	$\widetilde{t}t, \widetilde{t} \rightarrow t\widetilde{z}^{0}$: 1 lep + b-iet + E_{π} -ies	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166]	230-560 GeV \tilde{t} mass $(m(\bar{r}^0) = 0)$		
fire	$\widetilde{\mathrm{ff}}, \widetilde{\mathrm{f}} \rightarrow \mathrm{t}\widetilde{\mathrm{v}}^{0}$: 0/1/2 lep (+ b-iets) + E	L=4.7 fb ⁻¹ , 7 TeV [1208.1447,1208.2590,1209.418	6] 230-465 GeV \tilde{t} mass $(m(\bar{\tau}^0) = 0)$		
ωġ	tt (natural GMSB) ; Z(→II) + b-iet + E	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 GeV \tilde{f} mass $(115 \le m(x^2) \le 230 \text{ GeV})$		
	$ 1 = 10^{\circ} \cdot 2 \operatorname{lep} + E$	L=4.7 fb ⁻¹ , 7 TeV [1208,2884] 85-195	SeV $\int mass_{(m/2^{0})} = 0$		
5 L	$\vec{x}^{\dagger}\vec{x}^{\dagger}\vec{x}^{\dagger}$	/ =4.7 fb ⁻¹ .7 TeV [1208.2884]	110-340 GeV $\tilde{\chi}^{\pm}$ mass $(m/\bar{\chi}^{0}) \le 10 \text{ GeV} (m/\bar{\chi}) = \frac{1}{2} (m/\bar{\chi}^{\pm}) \pm m/\bar{\chi}^{0}))$		
EV ife	$\tilde{x}^{\pm}\tilde{x} \rightarrow v (\tilde{x}v) \tilde{v} (\tilde{x}v) : 3 ep + E$	/ =13.0 fb ⁻¹ 8 TeV (ATLAS_CONE_2012_154)	580 GeV $\vec{\chi}^{\pm}$ mass $(m(\vec{x}^{\pm}) - m(\vec{x}^{0}) - 2(m(\vec{x}^{\pm}) - m(\vec{x}^{0}))) = 0$ $m(\vec{x}^{0}) = 0$	about	
9	$\chi_1 \chi_2 \xrightarrow{\pi^{\pm} \pi^{0}} W^{(*)} \overline{w}^{-7} \chi^{(*)} \overline{w}^{-1} \xrightarrow{\pi^{\pm} \pi^{0}} W^{(*)} \overline{w}^{-7} \xrightarrow{\pi^{\pm} \pi^{0}} \xrightarrow{\pi^{\pm} \pi^{0}} 1$ lop + E ^{T, miss}	L=13.0 fb ⁻¹ 8 TeV [ATLAS-CONE-2012-154]	40.295 GeV $\tilde{\chi}^{\pm}$ mass $(m(\chi^{\pm}) = m(\chi^{\pm}) = 0$ steptops decoupled)	above)	
	$\chi_1 \chi_2 \rightarrow VV \chi_2 \chi_1$. S lep $+ E_{T, miss}$ Direct $\tilde{x}^{(1)}$ pair prod (AMSR) : long lived $\tilde{x}^{(1)}$	L=13.010 , 0 187 [A1LA3-CONF-2012-134]	$\chi_1 = 10000000000000000000000000000000000$		
s	Steble 2 P bedrene (low 8 Pr (full detector)	L=4.7 fb , 7 lev [1210.2002] 22			
cle cle	Stable g R-hadrons : low p, py (full detector)	L=4.7 fb , 7 lev [1211.1597]	see out timese		
ng.	Stable t R-hadrons : low β , $\beta\gamma$ (full detector)	L=4.7 fb , 7 lev [1211.1597]			
ρğ	GMSB : stable 7	L=4.7 fb ', 7 TeV [1211.1597]	300 GeV T MASS (5 < tanp < 20)	~	
	$\chi_1 \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV q mass (0.3×10 ⁻ < λ ₂₁₁ < 1.5×10 ⁻ , 1 mm <	< ct < 1 m,g decoupled)	
	LFV : pp $\rightarrow \bar{v}_{\tau} + X, \bar{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.61 TeV V_{τ} mass $(\lambda_{311}^{*}=0.10, \lambda_{132})$	=0.05)	
	LFV : pp $\rightarrow \tilde{v}_{x} + X, \tilde{v}_{x} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.10 TeV V ₂ mass (λ ₃₁₁ =0.10, λ ₁₍₂₎₃₃ =0.05))	
2	Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	$1.2 \text{ TeV} q = g \text{ mass} (c\tau_{LSP} < 1 \text{ mm})$		
R	$\tilde{\chi}, \tilde{\chi}, \chi, \tilde{\chi}, \tilde$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	700 GeV χ_1 mass $(m(\chi_1) > 300 \text{ GeV}, \lambda_{121} \text{ or } \lambda_{122})$	> 0)	
	$ _{L_{L}} _{L} \rightarrow \tilde{\chi}_{*}, \tilde{\chi}_{*} \rightarrow eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	430 GeV Mass $(m(\tilde{\chi}_1) > 100 \text{ GeV}, m(\tilde{l}_c) = m(\tilde{l}_c), \lambda_{121} \text{ or } $	λ ₁₂₂ > 0)	
	$\tilde{g} \rightarrow qqq$: 3-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV g mass		
Scalar gluon : 2-jet resonance pair		L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	00-287 GeV Sgluon mass (incl. limit from 1110.2693)		
WIM	P interaction (D5, Dirac χ) : 'monojet' + $E_{T \text{ miss}}$	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M* \$Cale (m _x < 80 GeV, limit of < 687 GeV	/ for D(8)	
		10-1	1	10	
		10	I	10	

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Eva anday Service Service

July 4th (CERN and Melbourne)

The New Boson

Higgs was right Picture that changes the way we see the universe for ever

RESERVED

Production and Decays - the Channel Map

Dominant production mechanisms (all important, depending how H decays)

For discovery, key was a clean signal with a clear mass signature

High-resolution channels were king...

- $H \rightarrow \gamma \gamma$
- H → 4ℓ

They are also experimentally *simpler* channels (none are simple...)

In the 125 GeV region, many channels are potentially observable

(W/Z)H, H → bb

Reoptimised 7+8 TeV analysis Requires 2 b-tags and separates 0,1,2 lepton channels $\sim (W/Z) \rightarrow vv, \ell v, \ell \ell$ Discriminate via m_{bb} , resolution $\sim 16\%$, improved by including muons Control samples and final fit used to scale backgrounds

Cross-check: see expected WZ and ZZ peak with $Z \rightarrow bb$ All non-diboson bkgs subtracted; Significance: 4σ

μ(125)=-0.4±0.7(stat)± 0.8(syst) 95% CL limit at μ=1.8

Η → ττ

Reoptimised 7+8 TeV analysis Analyse had-had, ℓ -had, $\ell \ell \otimes$ jet categories Discriminate via MMC m Background from $Z \rightarrow \tau \tau$ via "embedding" technique

 $\mu(125) = 0.7 \pm 0.7$ "significance" (125): 1.1σ expected: 1.7o

ATLAS-CONF-2012-160

Events / 20 GeV 1000 800

800

600

400

200

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

EXPERIMENT

 $H \rightarrow \tau \tau$ (doubly hadronic) candidate in VBF channel ($m_{MMC} = 131 \text{ GeV}$)

$$H \rightarrow WW^* \rightarrow ev\mu v$$

Events / 10 GeV

Events / 10 GeV

Numerous relevant backgrounds: diboson, top, W/Z+jets, estimated from control regions

Distinguish 0/1 jet and leading lepton $\rightarrow 4$ categories, main discrimination with: $m(\ell\ell), \Delta \phi(\ell\ell), m_{\tau}$

Observed: 917 events Expected from B: 774 ± 76 Expected from SM Higgs@125: 76 ± 15

One H → γγ Ingredient

Design feature of the ATLAS LAr calorimeter: fine granularity, in η and depth, allows to determine direction of photon

Directly affects mass reconstruction $m^{2}(\gamma\gamma)=2E_{1}E_{2}(1-\cos \alpha)$ where α is the opening angle of the two photons

z-vertex measured in γγ events from calorimeter "pointing"

High pileup: many vertices distributed over σ_{z}^{\sim} 5-6cm (beam spot length) \rightarrow tricky to know which vertex $\gamma\gamma$ came from

Calorimeter pointing alone reduces vertex error to ~ 1.5 cm and is robust against pile-up → good enough to make contribution to mass resolution from angular term negligible

57

$H \rightarrow \gamma \gamma$ Measurements

Mass measurement is systematics dominated in this channel

m_H = 126.6±0.3(stat)±0.7(syst) GeV

 $\mu = 1.80 \pm 0.30(\text{stat}) \pm {}^{0.21}_{0.15}(\text{syst}) \pm {}^{0.20}_{0.14}(\text{theo})$

Or, allowing both to float

Observed signal strength in different categories (especially high- p_{τ} , jets), gives some separation between _____ couplings in different production modes

Common B/BSM branching ratio (production independent)

H → 4{

Invariant mass distribution -

Data driven background estimates See clean $Z \rightarrow 4\ell$ signal around m_z , as expected

Again, signal continues to grow

Observed local significance 4.1 Expected 3.1 o

Run Number: 209736 Event Number: 135745044 Date: 2012-09-04, 01:05:49 CET

EtCut > 0.4 GeV PtCut > 0.4 GeV Vertex Cuts: Z direction < 1 cm Rphi < 1 cm

EXPERIMENT

Muon: blue Cells: , EMC

$H \rightarrow 4\ell$ Measurements

Combined p_o value

This search is over - you may not see this plot much more often! (for measurements it doesn't answer the right questions) 64

Combined Mass and μ

Combining all channels, assuming a common μ $\mu = 1.35 \pm 0.24$

Spin with yy

Use events within 1.5σ of the peak at 126.5 GeV, background shape from data sidebands $\mathbf{P}_{\mathbf{p}_1\mathbf{p}_2}$ Events / 0.05 $= 0^{+}$ (SM) fit 600 Data 500 Signal ATLAS-CONF-2012-168 (13 Dec) Background 400 300 Events / 0.05 $= 0^{+}$ (SM) pdf Background-subtracted data 80 $gg, J^P = 2_m^+ pdf$ Background uncertainty 200 60 dt = 13 fb⁻¹, \sqrt{s} = 8 TeV 100 40 ATLAS Preliminary 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 20 $|\cos\theta^*|$subtracting background...

-20

0

ATLAS Preliminary

0.2

0.1

0.3

 $\vec{P}_{\gamma_{1}\gamma_{2}}$ \vec{P}_{1} \vec{P}_{1} \vec{P}_{2} \vec{P}_{1} \vec{P}_{2} \vec{P}_{2} \vec{P}_{2} \vec{P}_{2} \vec{P}_{2} \vec{P}_{2}

|cosθ*|

0.9

L dt = 13 fb⁻¹, \sqrt{s} = 8 TeV

0.8

0.7

0.4 0.5 0.6

Spin with yy

Spin with 48

Use $m_{_{12}}$, $m_{_{34}}$ and five production & decay angles in a BDT or MELA discriminant Use events with $m_{_{4\ell}}$ between 115 and 130 GeV

Parity with 48

Entries

12

10

8

6

2

Background ZZ⁽

 $J^{P} = 0^{+}$

 $J^{P} = 0^{T}$

-1 -0.8-0.6-0.4-0.2 0

Background Z+jets, tt

Signal ($m_{\mu} = 125 \text{ GeV}$)

Use m_{12} , m_{34} and five production & decay angles in a BDT or MELA discriminant Use events with m_{μ} between 115 and 130 GeV

ATLAS Preliminary

 $\sqrt{s}=7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$

√s=8 TeV:∫Ldt = 13.0 fb⁻¹

0.2 0.4 0.6 0.8 **BDT** Discriminant

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

5

10

 $\log(L(H_)/L(H_))$ 0⁺ hypothesis consistent with data within 0.5σ 0⁻ hypothesis excluded at 99% CL (expected exclusion at 96% CL)

s0.45 utrie 0.4 Eutrie

0.35[‡]

0.25

0.2

0.15

0.1

0.05

0

-10

-5

0

What's Next?

A big programme now to complete analyses of "Run-1" data

- Painstaking work to measure precisely the properties of the new boson remember how hard it was to find - this is not easy work, it pushes the detector capabilities very hard
- Continue searching in plethora of other channels are other new objects hiding there?
- Huge measurement programme underway on 8 TeV data but this will run through the next two years

Long Shutdown 1, 2013-14

- Remedial work on all LHC dipole magnet interconnects
- Detector consolidation work, after >3 years with little access
- Back in early 2015 at 13+ TeV, and 25ns (\rightarrow lower pileup)
- Major increase in mass reach for all searches
- Luminosities ~double today

Beyond "Run-2" (2015-2017?), further luminosity increases at 14 TeV

Closing Words

It has been a quite remarkable year

Performance of the LHC, and of ATLAS, have been beyond expectations

The computing and analysis systems have delivered results incredibly fast with such a huge volume of data

The co-discovery of the new boson by ATLAS and CMS has revealed a new type of boson at 125 GeV

So far, it looks more-and-more "Higgs-like" - spin-2 and negative parity are disfavoured by the latest results

The new era has just begun

Season's Greetings and a Happy New Year!
Fin

Table 2: Signal resolution (σ_{CB}), FWHM, number of expected signal events (N_S), number of background events (N_B) and signal to background ratio (N_S/N_B) in a mass window around $m_H = 126.5$ GeV containing 90% of the expected signal events for each of the 12 categories of the 8 TeV data analysis. The number of background events are obtained from the background + signal fit to the $m_{\gamma\gamma}$ data distribution.

\sqrt{s}	8 TeV					
Category	$\sigma_{CB}(GeV)$	FWHM (GeV)	Observed	N_S	N_B	N_S/N_B
Unconv. central, low p_{Tt}	1.47	3.45	569	29	538	0.053
Unconv. central, high p_{Tt}	1.37	3.22	25	4.2	25	0.168
Unconv. rest, low p_{Tt}	1.59	3.75	2773	61	2610	0.023
Unconv. rest, high p_{Tt}	1.52	3.59	148	8.7	138	0.063
Conv. central, low p_{Tt}	1.64	3.86	446	18	417	0.044
Conv. central, high p_{Tt}	1.49	3.51	18	2.8	17	0.163
Conv. rest, low p_{Tt}	1.83	4.32	2898	54	2763	0.019
Conv. rest, high p_{Tt}	1.7	4.00	144	7.4	138	0.053
Conv. transition	2.35	5.57	1872	25	1825	0.014
High Mass two-jet	1.55	3.65	47	6.8	33	0.204
Low Mass two-jet	1.46	3.45	62	4.2	45	0.093
One-lepton	1.63	3.85	18	1.7	16	0.108
Inclusive	1.64	3.87	8802	223	8284	0.027

Mass Consistency

The mass measurements in the $\gamma\gamma$ and 4 ℓ channels are consistent at the level of ~2.7 σ using fully gaussian systematic errors, or 2.3 σ using different error assumptions

A lot of effort has been made to seek out unexpected systematic error sources, but nothing substantial has been identified

The error on the difference of the two measurements has a substantial statistical component

$H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$ Mass Scale Systematic Uncertainties

Main Mass Scale systematic uncertainties (considered in also ICHEP studies) :

Source	Relative Mass Scale Effect
Absolute Energy scale calibration from Z	0.3%
Upstream material simulation inaccuracies	0.3%
Pre-Sampler energy scale	0.1%

Further investigation and extensive checks lead to find additional sources of systematic uncertainties :

- LAr Strips relative calibration (0.2%)
- Photon energy resolution (0.15%)
- Calibration of the high gain (0.15%)
- Mis-classification due to fake conversions (0.13%)
- Backgound modeling (0.1%)
- Lateral shower development simulation (0.1%)
- Effect of PV choice (0.03%)

Main 4l Mass Scale systematic uncertainties :

Source	Relative Mass Scale Effect
Absolute Energy scale calibration from Z	0.4%
Low transverse energy electrons	0.2%
Muon momentum scale	0.2%

Further investigation and extensive checks have not lead to additional substantial sources of systematic uncertainty :

- Measurement with MS and ID alone
- Local detector biases checked event by event
- Local resolution effects checked using eventby-event error;
- kinematic distributions in agreement with expectation
- FSR simulation
- Different mass reconstruction using Z-mass constraint (+400 MeV shift)

