Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Higgs Physics

Tilman Plehn

Universität Heidelberg

IPPP Christmas Meeting, 12/2012

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H \rightarrow \gamma \gamma$

local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H
ightarrow \gamma \gamma$

local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS) ATLAS update 12/13/12

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H
ightarrow \gamma \gamma$

local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12

- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS) ATLAS update 12/13/12

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS) ATLAS update 12/13/12

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H \rightarrow \gamma \gamma$
 - local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS) ATLAS update 12/13/12
- remaining WW and $\tau\tau$, bb (CMS) adding little to discovery ATLAS WW post-ICHEP

 \Rightarrow narrow light resonance around $m_H = 126 \text{ GeV}$ discovered

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H \rightarrow \gamma \gamma$
 - local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS) ATLAS update 12/13/12
- remaining WW and $\tau\tau$, bb (CMS) adding little to discovery ATLAS WW post-ICHEP

 \Rightarrow narrow light resonance around $m_H = 126$ GeV discovered

curious about avalange of two-Higgs papers

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Higgs discovery

4th of July fireworks and on

- 'silver channel' $H \rightarrow \gamma \gamma$ local significance 4.5 σ (ATLAS), 4.1 σ (CMS) ATLAS update 12/13/12
- 'golden channel' $H \rightarrow ZZ \rightarrow 4\ell$ local significance 3.4σ (ATLAS), 3.2σ (CMS) ATLAS update 12/13/12
- remaining WW and $\tau\tau$, bb (CMS) adding little to discovery ATLAS WW post-ICHEP

 \Rightarrow narrow light resonance around $m_H = 126 \text{ GeV}$ discovered

curious about avalange of two-Higgs papers

Any models ruled out?

- Standard Model fine [Holthausen, Lim, Lindner]
- reasonably decoupling theories all fine [like MSSM]
- strongly interacting light Higgs supposedly fine
- Higgs portal fine
- fourth chiral generation dead [Lenz etal]

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Immediate questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

Higgs plus jets

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Immediate questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

2. What are the coupling values?

- 'coupling' after fixing operator basis
- Standard Model Higgs or beyond?

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Immediate questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

2. What are the coupling values?

- 'coupling' after fixing operator basis
- Standard Model Higgs or beyond?

3. What can we expect in the future?

- WBF analyses still weak
- VH and $t\bar{t}H$ missing
- self coupling not accessible?

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Immediate questions

1. What is the 'Higgs' Lagrangian?

- psychologically: looked for Higgs, so found a Higgs
- CP-even spin-0 scalar expected spin-1 vector unlikely spin-2 graviton unexpected

2. What are the coupling values?

- 'coupling' after fixing operator basis
- Standard Model Higgs or beyond?

3. What can we expect in the future?

- WBF analyses still weak
- VH and ttH missing
- self coupling not accessible?

4. What does all this tell us?

- models predicting weak-scale modifications
- renormalization group based Hail-Mary passes

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Heavy flavor inspiration

- for any observed Higgs coupling there exists a renormalizable operator
- except Higgs production in gluon fusion
- except Higgs decay to photons
- except g_{WWH} might mean $HW^{\mu
 u}W_{\mu
 u}$
- Higgs Lagrangian all but trivial

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Heavy flavor inspiration

- for any observed Higgs coupling there exists a renormalizable operator
- except Higgs production in gluon fusion
- except Higgs decay to photons
- except g_{WWH} might mean $HW^{\mu
 u}W_{\mu
 u}$
- Higgs Lagrangian all but trivial
- ⇒ analyze Higgs kinematics [in as many channels as possible]

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Model independent angles

- first step: Higgs polar angle for spin-0 vs spin-2 $_{\rm [Alves;\,ATLAS/CMS]}$

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Model independent angles

- first step: Higgs polar angle for spin-0 vs spin-2 [Alves; ATLAS/CMS]

 $\frac{d\Gamma_0}{d\cos\theta^*} \sim P_0(\theta^*) = 1 \qquad P_2(\theta^*) \sim 1 + 6\cos^2\theta^* + \cos^4\theta^*$

- analysis of $H \rightarrow ZZ$ decays [Melnikov etal; Lykken etal; v d Bij etal; Englert, Spannowsky, Takeuchi] decay plane correlation the classic [Cabibbo & Maksymowicz; Dell'Aquila & Nelson]

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Model independent angles

- first step: Higgs polar angle for spin-0 vs spin-2 [Alves; ATLAS/CMS]

 $\frac{d\Gamma_0}{d\cos\theta^*} \sim P_0(\theta^*) = 1 \qquad \qquad P_2(\theta^*) \sim 1 + 6\cos^2\theta^* + \cos^4\theta^*$

- analysis of $H \rightarrow ZZ$ decays [Melnikov etal; Lykken etal; v d Bij etal; Englert, Spannowsky, Takeuchi] decay plane correlation the classic [Cabibbo & Maksymowicz; Dell'Aquila & Nelson]
- analysis of WBF jets [Rainwater, TP, Zeppenfeld; Hagiwara, Li, Mawatari; Englert, Mawatari, Netto, TP] azimuthal jet angle with same information

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Model independent angles

- first step: Higgs polar angle for spin-0 vs spin-2 [Alves; ATLAS/CMS]

 $\frac{d\Gamma_0}{d\cos\theta^*} \sim P_0(\theta^*) = 1 \qquad \qquad P_2(\theta^*) \sim 1 + 6\cos^2\theta^* + \cos^4\theta^*$

- analysis of $H \rightarrow ZZ$ decays [Melnikov etal; Lykken etal; v d Bij etal; Englert, Spannowsky, Takeuchi] decay plane correlation the classic [Cabibbo & Maksymowicz; Dell'Aquila & Nelson]
- analysis of WBF jets [Rainwater, TP, Zeppenfeld; Hagiwara, Li, Mawatari; Englert, Mawatari, Netto, TP] azimuthal jet angle with same information

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Operators

First question [not first answer]

- what are the Higgs quantum numbers?
- what is the structure of the Higgs Lagrangian?
- can the Higgs give mass to heavy states?

Model independent angles

first step: Higgs polar angle for spin-0 vs spin-2 [Alves; ATLAS/CMS]

 $\frac{d\Gamma_0}{d\cos\theta^*} \sim P_0(\theta^*) = 1 \qquad P_2(\theta^*) \sim 1 + 6\cos^2\theta^* + \cos^4\theta^*$

- analysis of $H \to ZZ$ decays [Melnikov etal; Lykken etal; v d Bij etal; Englert, Spannowsky, Takeuchi] decay plane correlation the classic [Cabibbo & Maksymowicz; Dell'Aquila & Nelson]
- analysis of WBF jets [Rainwater, TP, Zeppenfeld; Hagiwara, Li, Mawatari; Englert, Mawatari, Netto, TP] azimuthal jet angle with same information
- Higgs operators testable in almost all channels [MC: Madgraph, etc]
- \Rightarrow will this work?

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Couplings

Current model [guessing answer to question One]

- assume: narrow CP-even scalar
 SM-like D4 structures
 SM-induced D6 structures
- couplings from production & decay combinations?

$$\begin{array}{c} H \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \end{array}$$

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Couplings

Current model [guessing answer to question One]

- assume: narrow CP-even scalar
 SM-like D4 structures
 SM-induced D6 structures
- couplings from production & decay combinations?

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+\tau^- \\ H \to \gamma\gamma \end{array}$$

Similar analyses

- Higgs cross section group: $\kappa_X \equiv (1 + \Delta_X)$
- indicating that Δ_X is a deviation from the Standard Model
- induced couplings with parametrical dependence and new physics

$$g_{\gamma} = g_{\gamma}^{ ext{SM}} \, \left(1 + \Delta_{\gamma}^{ ext{SM}} + \Delta_{\gamma}
ight) \; \equiv g_{\gamma}^{ ext{SM}} \kappa_{\gamma}$$

- it really is couplings, not 'scaling factors'

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Couplings

Current model [guessing answer to question One]

- assume: narrow CP-even scalar
 SM-like D4 structures
 SM-induced D6 structures
- couplings from production & decay combinations?

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+\tau^- \\ H \to \gamma\gamma \end{array}$$

Why 126 GeV is perfect [Dührssen et al; SFitter 2009/2012; Contino etal; Grojean etal]

- measurements: $GF : H \rightarrow ZZ, WW, \gamma\gamma$ [2011] $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [2012] $VH : H \rightarrow b\bar{b}$ [2015: BDRS?] $t\bar{t}H : H \rightarrow b\bar{b}$... [2015: boosted?]

- parameters: g_{HXX} with $X = W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass, maybe Z_{γ}]

- correlations:
$$N_{
m ev} \propto rac{g_{
m
ho}^2 g_d^2}{\Gamma_{
m tot}(\{g_X^2\})}$$

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Couplings

Current model [guessing answer to question One]

- assume: narrow CP-even scalar
 SM-like D4 structures
 SM-induced D6 structures
- couplings from production & decay combinations?

$$\begin{array}{c} gg \to H \\ qq \to qqH \\ gg \to t\bar{t}H \\ qq' \to VH \end{array} \longleftrightarrow \qquad \begin{array}{c} H \to ZZ \\ H \to WW \\ H \to b\bar{b} \\ H \to \tau^+\tau^- \\ H \to \gamma\gamma \end{array}$$

SFitter ansatz [(Dührssen), Klute, Lafaye, TP, Rauch, Zerwas]

- experimental/theory errors on signal and backgrounds [RFit] Atlas and CMS both included total width from observed partial widths [most general ansatz now] electroweak corrections still not relevant
- starting point: exclusive likelihood map individual coupling: profile likelihood best fit: Minuit errors: toy measurements
- \Rightarrow global and local analysis possible

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Global/local analysis

Global view on 8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas; TP & Rauch]

- g_W included post-ICHEP
- (1) expected 2012: SM central values, measured error bars
 - two symmetric solutions $\Delta_t = 0, -2$

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Global/local analysis

Global view on 8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas; TP & Rauch]

- *g_W* included post-ICHEP
- (1) expected 2012: SM central values, measured error bars
 - two symmetric solutions $\Delta_t = 0, -2$
- (2) measured 2012: measured central values and error bars
 - top Yukawa benefitting from fluctuations weak third solution with large quark Yukawas

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Global/local analysis

Global view on 8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas; TP & Rauch]

- *g_W* included post-ICHEP
- (1) expected 2012: SM central values, measured error bars
 - two symmetric solutions $\Delta_t = 0, -2$
- (2) measured 2012: measured central values and error bars
 - top Yukawa benefitting from fluctuations weak third solution with large quark Yukawas

Local view on 7 TeV data

- focus on SM solution where possible
- five couplings from data
 - $g_W \sim 0$ while g_Z okay g_b and g_t hurt by secondary solution g_{τ} inconclusive in data
- poor man's analysis great: $\Delta_j \equiv \Delta_H$
- ⇒ pointing towards Standard Model?

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Global/local analysis

Global view on 8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas; TP & Rauch]

- g_W included post-ICHEP
- (1) expected 2012: SM central values, measured error bars
 - two symmetric solutions $\Delta_t = 0, -2$
- (2) measured 2012: measured central values and error bars
 - top Yukawa benefitting from fluctuations weak third solution with large quark Yukawas

Local view on 8 TeV data [post-ICHEP]

- focus on SM solution
- six couplings from data [errors 20 50%]
 - $g_{W,Z}$ fine $g_{t,b}$ indirectly g_{τ} poor g_{γ} now possible

Tilman Plehn

Discovery

1 Operators

2 Couplings

- 3 Future
- 4 Theory
- Higgs plus jets

Global/local analysis

Global view on 8 TeV data [Klute, Lafaye, TP, Rauch, Zerwas; TP & Rauch]

- g_W included post-ICHEP
- (1) expected 2012: SM central values, measured error bars
 - two symmetric solutions $\Delta_t = 0, -2$
- (2) measured 2012: measured central values and error bars
 - top Yukawa benefitting from fluctuations weak third solution with large quark Yukawas

Local view on 8 TeV data [post-ICHEP]

- focus on SM solution
- six couplings from data [errors 20 50%]
 - $g_{W,Z}$ fine
 - $g_{t,b}$ indirectly
 - $g_{ au}$ poor
 - g_γ now possible
- all hypotheses great: $\Delta_H, \Delta_V, \Delta_f, ...$

hypothesis	χ^{2}_{2012} /dof	sol's
Standard Model	43.3/54	
form factor Δ_H	32.2/53	1
two-parameter $\Delta_{V,f}$	29.0/52	2
independent Δ_x	27.7/49	3
including Δ_{γ}	27.3/48	2

⇒ moving towards Standard Model?

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model and renormalizable
- effective HVV Lagrangian

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{HVV}} = & g_{\text{H}gg} \ \text{HG}_{\mu\nu}^{a} \ \text{G}^{a\mu\nu} + g_{H\gamma\gamma} \ \text{HA}_{\mu\nu} A^{\mu\nu} + g^{(1)}_{HZ\gamma} \ \text{A}_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZ\gamma} \ \text{HA}_{\mu\nu} Z^{\mu\nu} \\ + g^{(1)}_{HZZ} \ \text{Z}_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZZ} \ \text{HZ}_{\mu\nu} Z^{\mu\nu} + g^{(3)}_{HZZ} \ \text{HZ}_{\mu} Z^{\mu} \\ + g^{(1)}_{HWW} \ \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_{HWW} \ \text{HW}^{+}_{\mu\nu} W^{-\mu\nu} + g^{(3)}_{HWW} \ \text{HW}^{+}_{\mu} W^{-\mu} \end{split}$$

- related to D6 operators

$$\mathcal{L}_{\text{eff}} = \sum_{j} \frac{f_{j} \mathcal{O}_{j}}{\Lambda^{2}}$$

$$\begin{split} g_{Hgg} &= -\frac{\alpha_s}{8\pi} \frac{f_g v}{\Lambda^2} & g_{H\gamma\gamma} = -\frac{gM_W}{\Lambda^2} \frac{s_w^2 (f_{BB} + f_{WW} - f_{BW})}{2} \\ g_{HZ\gamma}^{(1)} &= \frac{gM_W}{\Lambda^2} \frac{s_w (f_W - f_B)}{2c_w} & g_{HZ\gamma}^{(2)} = \frac{gM_W}{\Lambda^2} \frac{s_w [2s_w^2 f_{BB} - 2c_w^2 f_{WW} + (c_w^2 - s_w^2) f_{BW}]}{2c_w} \\ g_{HZZ}^{(1)} &= \frac{gM_W}{\Lambda^2} \frac{c_w^2 f_W + s_w^2 f_B}{2c_w^2} & g_{HZZ}^{(2)} = -\frac{gM_W}{\Lambda^2} \frac{s_w^4 f_{BB} + c_w^4 f_{WW} + c_w^2 s_w^2 f_{BW}}{2c_w^2} \\ g_{HWW}^{(1)} &= \frac{gM_W}{\Lambda^2} \frac{f_W}{2} & g_{HWW}^{(2)} = -\frac{gM_W}{\Lambda^2} f_{WW} & \text{etc} \end{split}$$

- analysis is terms of f_i [careful with minimal basis]

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model and renormalizable
- effective HVV Lagrangian

Anomalous couplings

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{HVV}} = & g_{\text{H}gg} \; HG_{\mu\nu}^{a} \, G^{a\mu\nu} + g_{H\gamma\gamma} \; HA_{\mu\nu} A^{\mu\nu} + g_{H2\gamma}^{(1)} \; A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{H2\gamma}^{(2)} \; HA_{\mu\nu} Z^{\mu\nu} \\ + g_{H2Z}^{(1)} \; Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{H2Z}^{(2)} \; HZ_{\mu\nu} Z^{\mu\nu} + g_{H2Z}^{(3)} \; HZ_{\mu} Z^{\mu} \\ + g_{\text{HWW}}^{(1)} \; \left(W_{\mu\nu}^{+} \, W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g_{\text{HWW}}^{(2)} \; HW_{\mu\nu}^{+} W^{-\mu\nu} + g_{\text{HWW}}^{(3)} \; HW_{\mu}^{+} W^{-\mu} \end{split}$$

- related to D6 operators

$$\mathcal{L}_{\text{eff}} = \sum_{j} \frac{f_{j} \mathcal{O}_{j}}{\Lambda^{2}}$$

- analysis is terms of f_i [careful with minimal basis]
- also include e-w precision data

$$\begin{split} \alpha \Delta T &= \frac{3}{4c^2} \frac{e^2}{16\pi^2} \left[f_B \frac{m_H^2}{\Lambda^2} \log \frac{\Lambda^2}{m_H^2} + (c_w^2 f_W + f_B) \frac{m_Z^2}{\Lambda^2} \log \frac{\Lambda^2}{m_H^2} \right. \\ &+ \left(2c_w^2 f_W + (3c_w^2 - 1)f_B \right) \frac{m_Z^2}{\Lambda^2} \log \frac{\Lambda^2}{m_Z^2} \right] \end{split}$$

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Anomalous couplings

Anomalous Higgs couplings [Hagiwara etal; Corbett, Eboli, Gonzales-Fraile, Gonzales-Garcia]

- assume Higgs is largely Standard Model and renormalizable
- effective HVV Lagrangian

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{HVV}} = & g_{\text{H}gg} \; HG_{\mu\nu}^{a} \, G^{a\mu\nu} + g_{H\gamma\gamma} \; HA_{\mu\nu} A^{\mu\nu} + g_{H2\gamma}^{(1)} \; A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{H2\gamma}^{(2)} \; HA_{\mu\nu} Z^{\mu\nu} \\ + g_{H2Z}^{(1)} \; Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{H2Z}^{(2)} \; HZ_{\mu\nu} Z^{\mu\nu} + g_{H2Z}^{(3)} \; HZ_{\mu} Z^{\mu} \\ + g_{HWW}^{(1)} \; \left(W_{\mu\nu}^{+} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g_{HWW}^{(2)} \; HW_{\mu\nu}^{+} W^{-\mu\nu} + g_{HWW}^{(3)} \; HW_{\mu}^{+} W^{-\mu} \end{split}$$

related to D6 operators

$$\mathcal{L}_{\text{eff}} = \sum_{j} rac{\mathbf{f}_{j} \, \mathcal{O}_{j}}{\Lambda^{2}}$$

- analysis is terms of f_j [careful with minimal basis]

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f$ [little Higgs $v \sim g^2 f/(2\pi)$]

More on couplings

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f$$
 [little Higgs $v \sim g^2 f/(2\pi)$]

More on couplings

- postulate new $f\gtrsim v$ and $m_
ho o 4\pi f_{[c_j\sim 1]}$ [assume custodial symmetry]

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \overrightarrow{l}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW} g}{16 \pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_{HB} g'}{16 \pi^2 f^2} \left(D^{\mu} H \right)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_\gamma g'^2}{16 \pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16 \pi^2 f^2} \frac{g_{\rho}^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}. \end{split}$$

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]
- interesting if $v \ll f < 4\pi f$ [little Higgs $v \sim g^2 f/(2\pi)$]

More on couplings

- postulate new $f\gtrsim v$ and $m_
 ho o 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strength

$$\begin{split} \mathcal{L}_{\text{SILH}} &\sim \frac{c_H}{f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6}{(3f)^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \vec{I}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W}{(16f)^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B}{(16f)^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW}}{(16f)^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB}}{(16f^2)} \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g}{(256f)^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu} . \end{split}$$

Tilman Plehn

Discovery

1 Operators

2 Couplings

3 Future

4 Theory

Higgs plus jets

Light Higgs as a Goldstone boson [Giudice, Grojean, Pomarol, Rattazzi]

- strongly interacting models predicting heavy broad resonance(s)
- light state if protected by Goldstone's theorem [Georgi & Kaplan]

- interesting if
$$v \ll f < 4\pi f$$
 [little Higgs $v \sim g^2 t/(2\pi)$]

More on couplings

- postulate new $f\gtrsim v$ and $m_
 ho o 4\pi f$ [$c_j\sim$ 1] [assume custodial symmetry]
- adding D6 weak operators with relative strength

$$\begin{split} \mathcal{L}_{\text{SILH}} &\sim \frac{c_{H}}{f^{2}} \partial^{\mu} \left(H^{\dagger}H\right) \partial_{\mu} \left(H^{\dagger}H\right) + \frac{c_{T}}{f^{2}} \left(H^{\dagger}\overrightarrow{D^{\mu}}H\right) \left(H^{\dagger}\overrightarrow{D}_{\mu}H\right) \\ &- \frac{c_{6}}{(3f)^{2}} \left(H^{\dagger}H\right)^{3} + \left(\frac{c_{y}y_{f}}{f^{2}}H^{\dagger}H\overline{f}_{L}Hf_{R} + \text{h.c.}\right) \\ &+ \frac{ic_{W}}{(16f)^{2}} \left(H^{\dagger}\sigma^{i}\overrightarrow{D^{\mu}}H\right) \left(D^{\nu}W_{\mu\nu}\right)^{i} + \frac{ic_{B}}{(16f)^{2}} \left(H^{\dagger}\overrightarrow{D^{\mu}}H\right) \left(\partial^{\nu}B_{\mu\nu}\right) \\ &+ \frac{ic_{HW}}{(16f)^{2}} \left(D^{\mu}H\right)^{\dagger}\sigma^{i}(D^{\nu}H)W_{\mu\nu}^{i} + \frac{ic_{HB}}{(16f^{2})} \left(D^{\mu}H\right)^{\dagger} \left(D^{\nu}H\right)B_{\mu\nu} \\ &+ \frac{c_{\gamma}}{(256f)^{2}}H^{\dagger}HB_{\mu\nu}B^{\mu\nu} + \frac{c_{g}}{(256f)^{2}}H^{\dagger}HG_{\mu\nu}^{a}G^{a\mu\nu}. \end{split}$$

- leading terms in wave function renormalization and Hⁿ
- \Rightarrow collider phenomenology of mostly ($H^{\dagger}H$) terms [Mühlleitner etal]

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings

3 Future

- 4 Theory
- Higgs plus jets

Future: top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background $t\overline{t}b\overline{b}, t\overline{t}jj$ [weighted by b-tag]

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings

3 Future

- 4 Theory
- Higgs plus jets

Future: top Yukawa

Direct measurement $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background $t\bar{t}b\bar{b}, t\bar{t}jj$ [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings

3 Future

- 4 Theory
- Higgs plus jets

Future: top Yukawa

Direct measurement $t\bar{t}H, H ightarrow bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

BANG	
$\frac{66}{300} \frac{4}{10^{-1}} \frac{1}{10^{-1}} 1$	3 - 6 + 0.3 atimum group-frances $3 - 60 - 60 - 60^{-1}$ A Physics Buddes with Tracks, if messons, and some aking into account the uncertainty dB in the total atimum. $\frac{1000 + 100 + 100}{100 + 100 + 100}$
$\begin{array}{c} \begin{array}{c} 131 \\ $	till (130) 0.035 1.4 0.05 4-6 jets, 4-6 b-taggord (regad) 1.6 1.6 1.6 titl (130) 0.045 0.9 0.42 1.6 till (130) 0.045 0.9 0.42 1.6 till (130) 0.025 0.6 0.18 1.8

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings

3 Future

- 4 Theory
- Higgs plus jets

Future: top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets analysis [TP, Salam, Spannowsky, Takeuchi]

 require tagged top and Higgs trigger on lepton only continuum ttbb left [with sidebands]

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings

3 Future

- 4 Theory
- Higgs plus jets

Future: top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\bar{t} \to \bar{b}W^- \to \bar{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets analysis [TP, Salam, Spannowsky, Takeuchi]

- require tagged top and Higgs trigger on lepton only continuum ttbb left [with sidebands]
- top tagger working [Atlas-Heidelberg]
- \Rightarrow how do we find this channel?

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings

3 Future

- 4 Theory
- Higgs plus jets

Future: top Yukawa

Direct measurement $t\bar{t}H, H ightarrow b\bar{b}$ [Atlas-Bonn: Jochen Cammin]

- crucial to understand Higgs sector [details later]
- trigger: $t \to bW^+ \to b\ell^+\nu$ reconstruction and rate: $\overline{t} \to \overline{b}W^- \to \overline{b}jj$
- continuum background ttbb, ttjj [weighted by b-tag]
- not a chance:
 - 1– combinatorics: m_H in $pp \rightarrow 4b_{tag}$ 2j $\ell \nu$
 - 2- kinematics: peak-on-peak
 - 3– systematics: $S/B \sim 1/9$

Fat jets analysis [TP, Salam, Spannowsky, Takeuchi]

- require tagged top and Higgs trigger on lepton only continuum ttbb left [with sidebands]
- top tagger working [Atlas-Heidelberg]
- \Rightarrow how do we find this channel?

Tilman Plehn

Discovery

1 Operators

- 2 Couplings
- 3 Future

4 Theory

Higgs plus jets

Weak scale theory

D6 operators

- SM: non-decoupling chiral fermions $g_{Hgg} \sim lpha_{s}/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Recce]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Weak scale theory

D6 operators

- $-\,$ SM: non-decoupling chiral fermions $g_{Hgg} \sim \alpha_s/(12\pi v)$
- new particle with charge Q and SU(3) Casimir C(R) [Reece]

$$R_{\gamma} = \frac{g_{H\gamma\gamma}}{g_{H\gamma\gamma}^{\rm SM}} = \left[1 + 0.28\xi \left(1 \mp \sqrt{R_g}\right)\right]^2, \qquad \qquad \xi = \frac{3Q^2}{C_2(R)}$$

 \Rightarrow end of a fourth chiral generation [Lenz etal]

Higgs portal [e.g. Englert, Plehn, Rauch, Zerwas, Zerwas]

- renormalizable mixing $\mathcal{L} \sim (\mathcal{S}^{\dagger}\mathcal{S})~(\mathcal{H}^{\dagger}\mathcal{H})$
- form-factor correction to SM Higgs [cos x] plus invisible decays
- \Rightarrow invisible Higgs possible?

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

Weak scale

Supersymmetry

- MSSM Higgs mass the best-predicted LHC observable? [Hahn etal + Stal]
- stop mass/mixing crucial $[m_A = 1 \text{ TeV}, \tan \beta = 20]$

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Weak scale

Supersymmetry

- MSSM Higgs mass the best-predicted LHC observable? [Hahn etal + Stal]
- stop mass/mixing crucial $[m_A = 1 \text{ TeV}, \tan \beta = 20]$
- SUSY particles in eff couplings [everyone] stop mixing destructive [Reece]

$$\frac{g_{Hgg}}{g_{Hgg}^{SM}} = 1 + \frac{1}{4} \left(\frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2 X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right)$$

 \Rightarrow no final verdict on the MSSM

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Weak scale

Supersymmetry

- MSSM Higgs mass the best-predicted LHC observable? [Hahn etal + Stal]
- stop mass/mixing crucial $[m_A = 1 \text{ TeV}, \tan \beta = 20]$
- SUSY particles in eff couplings [everyone] stop mixing destructive [Reece]

$$\frac{g_{Hgg}}{g_{Hgg}^{SM}} = 1 + \frac{1}{4} \left(\frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2 X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right)$$

 \Rightarrow no final verdict on the MSSM

More general [Gupta, Rzehak, Wells]

- modelling Higgs coupling deviations
- deviations allowed by other constraints

	ΔhVV	$\Delta h \overline{t} t$	$\Delta h \overline{b} b$
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of %	tens of %
Minimal Supersymmetry	< 1%	3%	$10\%^{(\text{large tan }\beta)}, 100\%^{(\text{small tan }\beta)}$

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Weak scale

Supersymmetry

- MSSM Higgs mass the best-predicted LHC observable? [Hahn etal + Stal]
- stop mass/mixing crucial $[m_A = 1 \text{ TeV}, \tan \beta = 20]$
- SUSY particles in eff couplings [everyone] stop mixing destructive [Reece]

$$\frac{g_{Hgg}}{g_{Hgg}^{SM}} = 1 + \frac{1}{4} \left(\frac{m_t^2}{m_{t_1}^2} + \frac{m_t^2}{m_{t_2}^2} - \frac{m_t^2 X_t^2}{m_{t_1}^2 m_{t_2}^2} \right)$$

 \Rightarrow no final verdict on the MSSM

More general [Gupta, Rzehak, Wells]

- modelling Higgs coupling deviations
- deviations allowed by other constraints
- correlation of Δ_{τ} and heavy Higgs states
- \Rightarrow no final verdict on (too) many models?

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory
- Higgs plus jets

High scale theory

What if it is essentially the Standard Model

- many theories decouple in Higgs sector [custodial symmetry]
- any handle on high-scale evolution?

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future

4 Theory

Higgs plus jets

High scale theory

What if it is essentially the Standard Model

- many theories decouple in Higgs sector [custodial symmetry]
- any handle on high-scale evolution?

High-scale effects

- Higgs mass related to self coupling: $m_H = v\sqrt{2\lambda}$ top mass related to Yukawa: $y_t = \sqrt{2}m_t/v$

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 - \frac{3}{2}\lambda \left(3g_2^2 + g_1^2 \right) + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right]$$

- IR fixed point for λ/y_t^2 fixing m_H^2/m_t^2 [with gravity: Shaposhnikov, Wetterich]

$$m_{H} = 126.3 + \frac{m_{t} - 171.2}{2.1} \times 4.1 - \frac{\alpha_{s} - 0.1176}{0.002} \times 1.5$$

- Planck-scale conditions [Holthausen, Lim, Lindner]
- \Rightarrow Higgs and top strongly linked

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet counting

Jets with Higgs [Englert, Gerwick, TP, Schichtel, Schumann]

- example: WBF $H \rightarrow \tau \tau$
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet counting

Jets with Higgs [Englert, Gerwick, TP, Schichtel, Schumann]

- example: WBF $H \rightarrow \tau \tau$
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto from QCD [simulated with SHERPA]

- count add'l jets to reduce backgrounds

 $p_T^{veto} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{veto} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet counting

Jets with Higgs [Englert, Gerwick, TP, Schichtel, Schumann]

- example: WBF $H \rightarrow \tau \tau$
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto from QCD [simulated with SHERPA]

- count add'l jets to reduce backgrounds

 $p_T^{veto} > 20 \text{ GeV} \qquad \min y_{1,2} < y^{veto} < \max y_{1,2}$

- Poisson for QCD processes ['radiation' pattern]
- (fairly) staircase for e-w processes [cuts keeping signal]
- distribution of number of jets understood

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet geometry

Fox-Wolfram moments [Bernaciak, Buschmann, Butter, TP]

- jets as part of siagnatures becoming more relevant
- jet counting understood from QCD [Gerwick, TP, Schichtel, Schumann]
- event shapes waiting [Banfi, Salam, Zanderighi]
- FWMs known from BaBar, Belle; never used at LHC [included in PYTHIA]
- choice of weights

$$H_{\ell} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{\text{objets } i} Y_{\ell}^{m}(\Omega_{i}) \; \frac{|\vec{p}_{i}|}{\sqrt{s}} \right|^{2} \rightarrow \sum_{\text{objects } i,j} W_{ij} \; P_{\ell}(\cos \Omega_{ij}) \; ,$$

- tested in WBF H+jets vs QCD Z+jets vs $t\bar{t}$

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet geometry

Fox-Wolfram moments [Bernaciak, Buschmann, Butter, TP]

- jets as part of siagnatures becoming more relevant
- jet counting understood from QCD [Gerwick, TP, Schichtel, Schumann]
- event shapes waiting [Banfi, Salam, Zanderighi]
- FWMs known from BaBar, Belle; never used at LHC [included in PYTHIA]
- choice of weights

$$H_{\ell} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{\text{objets } i} Y_{\ell}^{m}(\Omega_{i}) \; \frac{|\vec{p}_{i}|}{\sqrt{s}} \right|^{2} \rightarrow \sum_{\text{objects } i,j} W_{ij} \; P_{\ell}(\cos \Omega_{ij}) \; ,$$

- tested in WBF H+jets vs QCD Z+jets vs tt
- distinctive for tagging jets only [after WBF cuts]

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet geometry

Fox-Wolfram moments [Bernaciak, Buschmann, Butter, TP]

- jets as part of siagnatures becoming more relevant
- jet counting understood from QCD [Gerwick, TP, Schichtel, Schumann]
- event shapes waiting [Banfi, Salam, Zanderighi]
- FWMs known from BaBar, Belle; never used at LHC [included in PYTHIA]
- choice of weights

$$H_{\ell} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{\text{objets } i} Y_{\ell}^{m}(\Omega_{i}) \; \frac{|\vec{p}_{i}|}{\sqrt{s}} \right|^{2} \rightarrow \sum_{\text{objects } i,j} W_{ij} \; P_{\ell}(\cos \Omega_{ij}) \; ,$$

- tested in WBF H+jets vs QCD Z+jets vs $t\bar{t}$
- distinctive for tagging jets only [after WBF cuts]
- distinctive for all jets [above 20 GeV]

Tilman Plehn

- Discovery
- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Jet geometry

Fox-Wolfram moments [Bernaciak, Buschmann, Butter, TP]

- jets as part of siagnatures becoming more relevant
- jet counting understood from QCD [Gerwick, TP, Schichtel, Schumann]
- event shapes waiting [Banfi, Salam, Zanderighi]
- FWMs known from BaBar, Belle; never used at LHC [included in PYTHIA]
- choice of weights

$$H_{\ell} = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{\text{objets } i} Y_{\ell}^{m}(\Omega_{i}) \; \frac{|\vec{p}_{i}|}{\sqrt{s}} \right|^{2} \rightarrow \sum_{\text{objects } i,j} W_{ij} \; P_{\ell}(\cos \Omega_{ij}) \; ,$$

- tested in WBF H+jets vs QCD Z+jets vs $t\bar{t}$
- distinctive for tagging jets only [after WBF cuts]
- distinctive for all jets [above 20 GeV]
- \Rightarrow QCD guys, any ideas?

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Where are we?

Immediate questions

- 1- What are the quantum numbers?
- 2- What are the coupling values?
- 3- What can we expect in the future?
- 4- What does all this tell us?

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Where are we?

Immediate questions

- 1- What are the quantum numbers?
- 2- What are the coupling values?
- 3- What can we expect in the future?
- 4- What does all this tell us?

More specific questions

- 1- will this work?
- 2- moving towards Standard Model?
- 3- how do we find this channel?
- 4- invisible Higgs possible?
- 5- no final verdict on (too) many models?
- 6- QCD guys, any ideas?
- \Rightarrow thinking about futures...

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Where are we?

Immediate questions

- 1- What are the quantum numbers?
- 2- What are the coupling values?
- 3- What can we expect in the future?
- 4- What does all this tell us?

More specific questions

- 1- will this work?
- 2- moving towards Standard Model?
- 3- how do we find this channel?
- 4- invisible Higgs possible?
- 5- no final verdict on (too) many models?
- 6- QCD guys, any ideas?
- \Rightarrow thinking about futures...

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Future: bottom Yukawa

Towards 14 TeV

- no $b\bar{b}H$ production observed no $H \rightarrow b\bar{b}$ decay observed [which | trust]
- information from ${\sf BR}(H o b ar{b}) \sim 58\%$ [HDecay]
- ⇒ 'not a channel, but a research program'

Tilman Plehn

Discovery

- 1 Operators
- 2 Couplings
- 3 Future
- 4 Theory

Higgs plus jets

Future: bottom Yukawa

Towards 14 TeV

- no $b\bar{b}H$ production observed no $H \rightarrow b\bar{b}$ decay observed [which I trust]
- information from ${\sf BR}(H o bar b)\sim 58\%$ [HDecay]
- ⇒ 'not a channel, but a research program'

Best channel $q\bar{q} ightarrow VH, H ightarrow bar{b}$

- let me comment on CMS analysis
- focus on boosted regime $p_{T,V}\gtrsim 120~\text{GeV}$ fudge factor Data/MC=1.91 \pm 0.14 \pm 0.31 for $Wb\bar{b}$ data-estimated background $\Delta\sigma/\sigma\sim 10\%$ 12 observables in BDT [most of them work and are understood] no side bands with any S/B
- \Rightarrow how will this ever work?

[my hopes rest on BDRS and jet substructure]

