Applied String Theory

David Tong

Durham Annual Theory Meeting 2012

Holography (AdS/CFT)

Strongly interacting quantum field theory

Gravity in (at least) one dimension higher

Many Explicit Examples

d=3+1 SU(N) Yang-Mills
 + scalars and fermions
(with lots of supersymmetry)

d=9+1 Type IIB string theory on AdS₅ x S⁵

d=2+1 *SU(N)* x *SU(N)* Chern-Simons + matter (with lots of supersymmetry)

d=9+1 Type IIA string theory on $AdS_4 \ge CP^3$

e.g

Two Major Directions

• Explore details of individual supersymmetric theories

• Study physical properties of generic theories

Physics in the Unrealistic Regime

Why you shouldn't care

- Complicated theories
- Large N
- (Supersymmetric)

Why you should

- Strongly coupled
- Completely solvable
- Universal behaviour

Universal Behaviour

The Vacuum State

My attempt at drawing Anti de-Sitter spacetime

 $ds^2 = rac{L^2}{r^2} \left(dr^2 + \eta_{\mu
u} dx^\mu dx^
u
ight)$

Heating up the Boundary Theory

Boundary field theory

- Black hole
- Hawking radiation = finite temperature

Finite Density Matter

Boundary field theory

- Reissner-Nordstrom black hole
- Hawking radiation = finite temperature
- Electric field = chemical potential

Three Stories

Story 1: Fluid Mechanics

Ultimate Low Energy Effective Theory

 $\rho(\vec{x},t) \qquad T(\vec{x},t) \qquad \vec{u}(\vec{x},t)$

Shear Viscosity

Kovtun, Policastro, Son, Starinets (2003)

Fluid-Gravity Correspondence

Navier-Stokes Equations

Einstein Equations

Battacharya, Hubeny, Minwalla, Rangamani (2009)

Happy Corollary

Extra terms in hydrodynamics

Minwalla et al. (2011) Son and Surowka (2009)

For the Future

Singularities? Turbulence?

Story 2: Conductivity

Unconventional Superconductors

Cleanest examples in d=2+1 dimensional planes

Ohm's Law

Boundary field theory d=2+1

 $j(\omega) = \sigma(\omega)E(\omega)$

Optical Conductivity in d=2

Herzog, Kovtun, Sachdev and Son (2007); Hartnoll (2008)

$$j(\omega) = \sigma(\omega) E(\omega)$$

Optical Conductivity in d=2

Herzog, Kovtun, Sachdev and Son (2007); Hartnoll (2008)

 $\operatorname{Re}\sigma(\omega) \sim K\,\delta(\omega)$

Because our theory is missing an underlying lattice

The lattice black hole

Horowitz, Santos, Tong (2012)

Spatially dependent chemical potential

 $\mu = \mu [1 + A\cos(k_L x)]$

<u>Parameters:</u> T, μ, k_L, A

Optical Conductivity

 $j(\omega) = \sigma(\omega) E(\omega)$

Delta function spreads out

Low Frequency Behaviour

Classical Drude model from general relativity

Mid-Frequency Behaviour

$$|\sigma(\omega)| = \frac{B}{\omega^{2/3}} + C$$

Surprising power-law behaviour

Robust Power-Law

$$|\sigma(\omega)| = \frac{B}{\omega^{2/3}} + C$$

B temperature independent

Scaling in High T_c Superconductors

 $Bi_2Sr_2Ca_{0.92}Y_{0.08}Cu_2O_{8+\delta}$

van der Marel et al. (2003)

For the Future

Why?

 $|\sigma(\omega)| \sim \omega^{-2/3}$

Story 3: Non-Fermi Liquids

Landau Fermi Liquid Theory

Interacting Fermions at density

Free fermions with Fermi surface

Except...

No Quasi-Particles

Major open problem in theoretical physics

Fermions in AdS/CFT

Solve the Dirac equation in this background: $D \psi - m \psi = 0$

Sung-Sik Lee (2009)

Non-Fermi Liquids

- Fermi Surface
 - Zero energy excitations at non-zero momentum
- Excitation spectrum depends on various parameters
 - Fermion mass, background geometry

Cubrovic et al. (Leiden) Liu et al. (MIT) (2009)

But there's an instability...

Hartnoll, Polchinski, Siverstein and Tong (2009)

...and a star forms in the bulk.

This is an *electron star*. The low energy physics appears to be that of a Landau Fermi liquid. ???

Explored in detail by Hartnoll and collaborators.

For the Future

Understand the electron star in more detail

Summary

Holography very useful tool to explore aspects of strongly interacting matter

Much Much More...

Jet Quenching Chesler and Yaffe

Quantum Turbulence Adams, Chesler and Liu

Crystal Formation Donos, Gauntlett + many others

Lowest Landau Level Physics Blake, Bolognesi, Tong, Wong

The End

Thank you for your attention

Extra Material

DC Resistivity

$$\rho \sim T^{2\nu - 1}$$

• Exponent depends on lattice spacing: $\nu = \frac{1}{2}\sqrt{5 + 2(k/\mu)^2 - 4\sqrt{1 + (k/\mu)^2}}$

• This is characteristic of a *locally critical* theory i.e. $z \to \infty$

Hartnoll, Hofman (2012)

• More recently, a mechanism suggested to drive this to linear resistivity.

Donos, Hartnoll (2012)

Navier-Stokes Equations

$$\rho(\vec{x},t) \qquad T(\vec{x},t) \qquad \vec{u}(\vec{x},t)$$

$$\partial^{\mu}T_{\mu\nu} = 0 \qquad \qquad T_{\mu\nu} = \dots$$
$$\partial^{\mu}J_{\mu} = 0 \qquad \qquad J_{\mu} = \dots$$

Evolution of Exact Results at Strong Coupling

- '70s and '80s: Quantities protected by symmetries and anomalies
 - Chiral Lagrangian
- '90s and '00s: Quantities protected by supersymmetry
 - BPS quantities, superpotentials
- '00s and '10s: Anything you like
 - But only in very particular, large N, theories