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Holography	
  (AdS/CFT)	
  

Strongly	
  interac7ng	
  	
  
quantum	
  field	
  theory	
  

Gravity	
  in	
  (at	
  least)	
  one	
  	
  
dimension	
  higher	
  



Many	
  Explicit	
  Examples	
  

d=3+1	
  SU(N)	
  Yang-­‐Mills	
  	
  
+	
  scalars	
  and	
  fermions	
  

(with	
  lots	
  of	
  supersymmetry)	
  

d=9+1	
  Type	
  IIB	
  string	
  theory	
  	
  
on	
  AdS5	
  x	
  S5	
  

e.g	
  

d=2+1	
  SU(N)	
  x	
  SU(N)	
  	
  
Chern-­‐Simons	
  +	
  maSer	
  	
  

(with	
  lots	
  of	
  supersymmetry)	
  
d=9+1	
  Type	
  IIA	
  string	
  theory	
  	
  

on	
  AdS4	
  x	
  CP3	
  



Two	
  Major	
  Direc7ons	
  

•  Explore	
  details	
  of	
  individual	
  supersymmetric	
  theories	
  
	
  
	
  
	
  
•  Study	
  physical	
  proper7es	
  of	
  generic	
  theories	
  



Physics	
  in	
  the	
  Unrealis7c	
  Regime	
  

•  Complicated	
  theories	
  
•  Large	
  N	
  
•  (Supersymmetric)	
  

	
  
	
  
•  Strongly	
  coupled	
  
•  Completely	
  solvable	
  
•  Universal	
  behaviour	
  

Why	
  you	
  shouldn’t	
  care	
  

Why	
  you	
  should	
  



Universal	
  Behaviour	
  



The	
  Vacuum	
  State	
  

Boundary	
  field	
  theory	
  

My	
  aSempt	
  at	
  drawing	
  	
  
An7	
  de-­‐SiSer	
  space7me	
  



Hea7ng	
  up	
  the	
  Boundary	
  Theory	
  

Boundary	
  field	
  theory	
  

•  Black	
  hole	
  
•  Hawking	
  radia7on	
  =	
  finite	
  temperature	
  



Finite	
  Density	
  MaSer	
  

Boundary	
  field	
  theory	
  

•  Reissner-­‐Nordstrom	
  black	
  hole	
  
•  Hawking	
  radia7on	
  =	
  finite	
  temperature	
  
•  Electric	
  field	
  =	
  chemical	
  poten7al	
  

E	
  



Three	
  Stories	
  



Story	
  1:	
  Fluid	
  Mechanics	
  



Ul7mate	
  Low	
  Energy	
  Effec7ve	
  Theory	
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Shear	
  Viscosity	
  

Kovtun,	
  Policastro,	
  Son,	
  Starinets	
  (2003)	
  



Fluid-­‐Gravity	
  Correspondence	
  

Navier-­‐Stokes	
  Equa7ons	
   Einstein	
  Equa7ons	
  

BaSacharya,	
  Hubeny,	
  Minwalla,	
  Rangamani	
  (2009)	
  



Happy	
  Corollary	
  

Extra	
  terms	
  in	
  hydrodynamics	
  

Minwalla	
  et	
  al.	
  (2011)	
  
Son	
  and	
  Surowka	
  (2009)	
  



For	
  the	
  Future	
  

Singulari7es?	
  Turbulence?	
  



Story	
  2:	
  Conduc7vity	
  



Unconven7onal	
  Superconductors	
  

Cleanest	
  examples	
  in	
  d=2+1	
  dimensional	
  planes	
  



Ohm’s	
  Law	
  

E	
  

D-BRANES ON ALF SPACES
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d=2+1	
  
Boundary	
  field	
  theory	
  



Op7cal	
  Conduc7vity	
  in	
  d=2	
  

Herzog,	
  Kovtun,	
  Sachdev	
  and	
  Son	
  (2007);	
  Hartnoll	
  (2008)	
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Op7cal	
  Conduc7vity	
  in	
  d=2	
  

Herzog,	
  Kovtun,	
  Sachdev	
  and	
  Son	
  (2007);	
  Hartnoll	
  (2008)	
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Reσ(ω) ∼ K δ(ω)
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Hi Bobby - hope you’re well. And welcome to the long-promised musings on the Alfy

project. Below I’ve concentrated on the hyper-kähler quotient construction of ALF spaces.
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c.f.	
  graphene	
  

Because	
  our	
  theory	
  is	
  missing	
  an	
  underlying	
  lahce	
  



The	
  lahce	
  black	
  hole	
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Parameters:	
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Spa7ally	
  dependent	
  chemical	
  poten7al	
  



Op7cal	
  Conduc7vity	
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Figure 5: The optical conductivity, both without the lattice (dashed line) and with the lattice
(solid line and data points) for µ = 1.4 and temperature T/µ = 0.115. Note that the lattice
(which has wavenumber k0 = 2 and amplitude A0 = 1.5) only changes the low frequency behavior.
The pole in Im σ without the lattice reflects the existence of a ω = 0 delta-function in Re σ.

There is nothing mysterious about the presence of this delta-function. It follows solely on the
grounds of momentum conservation in the boundary theory. If we have a translationally invariant
state with nonzero charge density, then one can always boost it to obtain a nonzero current with
zero applied electric field. This results in the infinite DC conductivity.

The introduction of a background spatial lattice, as described in the previous section, resolves
this issue. With no translational invariance, there is no momentum conservation and the ω = 0
delta-function spreads out, revealing its secrets. In this section we describe what was hiding in
that delta-function.

The optical conductivity, σ(ω), in the presence of the lattice is shown by the solid line in Fig. 5.
At high frequencies, ω � µ, the optical conductivity in the lattice background remains unchanged
from the translationally invariant black hole. The interesting physics lies at lower frequencies.
The dissipative part of the conductivity, Reσ, now rises at low ω. This is the redistribution of the
spectral weight of the delta-function. Moreover, the pole in the responsive part of the conductivity,
Im σ, has now disappeared, with Im σ(ω) → 0, as ω → 0, confirming that there is no longer a
delta-function at zero frequency3. We now describe the characteristics of the conductivity in more
detail.

3
The resolution of a delta-function into a Drude-like peak has been seen in a somewhat different context in

conformal fixed points with vanishing charge density [16]. Here the delta-function is resolved by interactions rather

than breaking of translational symmetry, either in an � expansion [16] or a 1/N expansion [17].
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Low	
  Frequency	
  Behaviour	
  

0.1 0.2 0.3 0.4 0.5 0.6

4

5

6

7

8

9

Ω�T

R
e�Σ�

0.1 0.2 0.3 0.4 0.5 0.6

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ω�T

Im
�Σ�

Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The

data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-

parameter Drude form

σ(ω) =
Kτ

1− iωτ
(3.2)

with both the scattering time τ and the overall amplitude K constants, independent of ω. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the

1% level) with the coefficient of the pole (3.1) in the translationally invariant case. All interesting

physics in this regime is therefore captured by the single parameter, τ . We have varied the

temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack

of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency

behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ω = 0 delta-function leaves behind a well-defined DC resistivity, ρ = (Kτ)−1
.

The Drude amplitude K is essentially independent of temperature T and all temperature de-

pendence in the resistivity ρ(T ) is inherited from τ . The results depend strongly on the lattice

wavenumber k0 and are shown on the left hand side of Fig. 7.

To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS2 × R2
, the

dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,

with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity

in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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Classical	
  Drude	
  model	
  from	
  general	
  rela7vity	
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Mid-­‐Frequency	
  Behaviour	
  

2 3 4 5 6 7 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ω Τ

�Σ�

2 3 4 5 6 7 80

20

40

60

80

Ω Τ

ar
g�Σ��

Figure 8: The modulus |σ| and argument arg σ of the conductivity. The background for both
plots has wavenumber k0 = 2, amplitude A0 = 1.5, chemical potential µ = 1.4 and temperature
T/µ = 0.115. The line on the right is a fit to the power law (3.5).

3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for ω/T � 1. However, for ω/T � 1, the optical conductivity
exhibits a power-law fall-off in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use ωτ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < ωτ < 8 for all the lattices we have examined,
even those with different temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, τT = 2.22, so ωτ = 2 corresponds to ω/T = 0.9.) In Fig. 8 we have plotted |σ| and the
phase angle over this range of frequencies. The data is very well fit by

|σ(ω)| = B

ω2/3
+ C (3.5)

In contrast, the phase angle of the conductivity, arg σ varies only slightly from 65◦. The slight
variation in the phase angle is enough so that the real and imaginary parts of the conductivity do
not individually follow simple power laws over the range indicated in Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|σ|−C) vs ωτ on a log-log plot. On the left we show three different choices for the lattice
wavenumber k0. On the right, we show three different temperatures. The fact that the curves all
form parallel straight lines for ωτ > 2 shows the power law fall-off with exponent −2/3 is robust.
Since the offset C depends on k0 and T , in Fig. 9 we have subtracted a different constant for each
curve.

different context in [23].
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-off σ(ω) ∼ ω−γ on the basis of a Luttinger liquid
model, with γ = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ω/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T � µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 × R2

regime.
However, a second explanation was put forward in [22] where it was argued that the σ ∼ ω−γ

behavior with γ ≈ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a σ(ω) ∼ ω−2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, σ(ω) follows a simple Drude form. However, for intermediate frequencies, |σ(ω)| has a power
law fall off (with constant offset) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.
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Figure 7: The left panel shows the DC resistivity plotted as a function of temperature for various

lattice spacings. On the right hand side we factor out the scaling (3.3, 3.4) and re-plot the same

data on a log scale. The lines denote a fit to the data including polynomial corrections to the

leading low temperature behavior. Both plots arise from a background with µ = 1.4 and the

lattice amplitude A0 = k0/2. The plots remain essentially unchanged for lattices of different
amplitudes.

point function of the charge density, evaluated at the lattice wavenumber. They then calculated

this two point function by perturbing the Reissner-Nordström AdS black hole and found

ρ ∝ T 2ν−1
(3.3)

where4

ν =
1

2

�
5 + 2(k/µ)2 − 4

�
1 + (k/µ)2 (3.4)

The exponent can be viewed as arising from the dimension ∆ = ν − 1
2 of the operator dual to the

charge density in the near horizon AdS2 region, evaluated at the lattice wavenumber k.
On the right hand side of Fig. 7 we plot ρ/T 2ν−1 for several values of the lattice wavenumber.

As discussed earlier, if our scalar field has lattice wavenumber k0, the charge density has lattice

wavenumber 2k0, so we have set k = 2k0 in (3.4). We have fit the data to ρ0 = T 2ν−1(a0 + a1T +

a2T 2 + a3T 3) and drawn the curves on the right hand side of Fig. 7. The fact that the curves all

approach nonzero, but finite, constants at low temperature shows that our data confirms the low

temperature scaling (3.3) with exponent (3.4) predicted in [12].

Note that as the temperature goes to zero, the dissipation goes to zero and the DC resistivity

vanishes. Thus the DC conductivity becomes infinite, as expected for a perfect lattice with no

dissipation.

4This is a manifestly scale invariant form of the exponent that was found in [12] and was first derived in a
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