
Applied	  String	  Theory	  

David	  Tong	  
	  

Durham	  Annual	  Theory	  Mee7ng	  2012	  



Holography	  (AdS/CFT)	  

Strongly	  interac7ng	  	  
quantum	  field	  theory	  

Gravity	  in	  (at	  least)	  one	  	  
dimension	  higher	  



Many	  Explicit	  Examples	  

d=3+1	  SU(N)	  Yang-‐Mills	  	  
+	  scalars	  and	  fermions	  

(with	  lots	  of	  supersymmetry)	  

d=9+1	  Type	  IIB	  string	  theory	  	  
on	  AdS5	  x	  S5	  

e.g	  

d=2+1	  SU(N)	  x	  SU(N)	  	  
Chern-‐Simons	  +	  maSer	  	  

(with	  lots	  of	  supersymmetry)	  
d=9+1	  Type	  IIA	  string	  theory	  	  

on	  AdS4	  x	  CP3	  



Two	  Major	  Direc7ons	  

•  Explore	  details	  of	  individual	  supersymmetric	  theories	  
	  
	  
	  
•  Study	  physical	  proper7es	  of	  generic	  theories	  



Physics	  in	  the	  Unrealis7c	  Regime	  

•  Complicated	  theories	  
•  Large	  N	  
•  (Supersymmetric)	  

	  
	  
•  Strongly	  coupled	  
•  Completely	  solvable	  
•  Universal	  behaviour	  

Why	  you	  shouldn’t	  care	  

Why	  you	  should	  



Universal	  Behaviour	  



The	  Vacuum	  State	  

Boundary	  field	  theory	  

My	  aSempt	  at	  drawing	  	  
An7	  de-‐SiSer	  space7me	  



Hea7ng	  up	  the	  Boundary	  Theory	  

Boundary	  field	  theory	  

•  Black	  hole	  
•  Hawking	  radia7on	  =	  finite	  temperature	  



Finite	  Density	  MaSer	  

Boundary	  field	  theory	  

•  Reissner-‐Nordstrom	  black	  hole	  
•  Hawking	  radia7on	  =	  finite	  temperature	  
•  Electric	  field	  =	  chemical	  poten7al	  

E	  



Three	  Stories	  



Story	  1:	  Fluid	  Mechanics	  



Ul7mate	  Low	  Energy	  Effec7ve	  Theory	  
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Shear	  Viscosity	  

Kovtun,	  Policastro,	  Son,	  Starinets	  (2003)	  



Fluid-‐Gravity	  Correspondence	  

Navier-‐Stokes	  Equa7ons	   Einstein	  Equa7ons	  

BaSacharya,	  Hubeny,	  Minwalla,	  Rangamani	  (2009)	  



Happy	  Corollary	  

Extra	  terms	  in	  hydrodynamics	  

Minwalla	  et	  al.	  (2011)	  
Son	  and	  Surowka	  (2009)	  



For	  the	  Future	  

Singulari7es?	  Turbulence?	  



Story	  2:	  Conduc7vity	  



Unconven7onal	  Superconductors	  

Cleanest	  examples	  in	  d=2+1	  dimensional	  planes	  



Ohm’s	  Law	  

E	  

D-BRANES ON ALF SPACES
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d=2+1	  
Boundary	  field	  theory	  



Op7cal	  Conduc7vity	  in	  d=2	  

Herzog,	  Kovtun,	  Sachdev	  and	  Son	  (2007);	  Hartnoll	  (2008)	  

c.f.	  graphene	  
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Op7cal	  Conduc7vity	  in	  d=2	  

Herzog,	  Kovtun,	  Sachdev	  and	  Son	  (2007);	  Hartnoll	  (2008)	  
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Hi Bobby - hope you’re well. And welcome to the long-promised musings on the Alfy

project. Below I’ve concentrated on the hyper-kähler quotient construction of ALF spaces.
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c.f.	  graphene	  

Because	  our	  theory	  is	  missing	  an	  underlying	  lahce	  



The	  lahce	  black	  hole	  
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Parameters:	  
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Spa7ally	  dependent	  chemical	  poten7al	  



Op7cal	  Conduc7vity	  
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Figure 5: The optical conductivity, both without the lattice (dashed line) and with the lattice
(solid line and data points) for µ = 1.4 and temperature T/µ = 0.115. Note that the lattice
(which has wavenumber k0 = 2 and amplitude A0 = 1.5) only changes the low frequency behavior.
The pole in Im σ without the lattice reflects the existence of a ω = 0 delta-function in Re σ.

There is nothing mysterious about the presence of this delta-function. It follows solely on the
grounds of momentum conservation in the boundary theory. If we have a translationally invariant
state with nonzero charge density, then one can always boost it to obtain a nonzero current with
zero applied electric field. This results in the infinite DC conductivity.

The introduction of a background spatial lattice, as described in the previous section, resolves
this issue. With no translational invariance, there is no momentum conservation and the ω = 0
delta-function spreads out, revealing its secrets. In this section we describe what was hiding in
that delta-function.

The optical conductivity, σ(ω), in the presence of the lattice is shown by the solid line in Fig. 5.
At high frequencies, ω � µ, the optical conductivity in the lattice background remains unchanged
from the translationally invariant black hole. The interesting physics lies at lower frequencies.
The dissipative part of the conductivity, Reσ, now rises at low ω. This is the redistribution of the
spectral weight of the delta-function. Moreover, the pole in the responsive part of the conductivity,
Im σ, has now disappeared, with Im σ(ω) → 0, as ω → 0, confirming that there is no longer a
delta-function at zero frequency3. We now describe the characteristics of the conductivity in more
detail.

3
The resolution of a delta-function into a Drude-like peak has been seen in a somewhat different context in

conformal fixed points with vanishing charge density [16]. Here the delta-function is resolved by interactions rather

than breaking of translational symmetry, either in an � expansion [16] or a 1/N expansion [17].
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Low	  Frequency	  Behaviour	  
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The

data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-

parameter Drude form

σ(ω) =
Kτ

1− iωτ
(3.2)

with both the scattering time τ and the overall amplitude K constants, independent of ω. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the

1% level) with the coefficient of the pole (3.1) in the translationally invariant case. All interesting

physics in this regime is therefore captured by the single parameter, τ . We have varied the

temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack

of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency

behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ω = 0 delta-function leaves behind a well-defined DC resistivity, ρ = (Kτ)−1
.

The Drude amplitude K is essentially independent of temperature T and all temperature de-

pendence in the resistivity ρ(T ) is inherited from τ . The results depend strongly on the lattice

wavenumber k0 and are shown on the left hand side of Fig. 7.

To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS2 × R2
, the

dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,

with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity

in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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Classical	  Drude	  model	  from	  general	  rela7vity	  
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Mid-‐Frequency	  Behaviour	  

2 3 4 5 6 7 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ω Τ

�Σ�

2 3 4 5 6 7 80

20

40

60

80

Ω Τ

ar
g�Σ��

Figure 8: The modulus |σ| and argument arg σ of the conductivity. The background for both
plots has wavenumber k0 = 2, amplitude A0 = 1.5, chemical potential µ = 1.4 and temperature
T/µ = 0.115. The line on the right is a fit to the power law (3.5).

3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for ω/T � 1. However, for ω/T � 1, the optical conductivity
exhibits a power-law fall-off in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use ωτ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < ωτ < 8 for all the lattices we have examined,
even those with different temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, τT = 2.22, so ωτ = 2 corresponds to ω/T = 0.9.) In Fig. 8 we have plotted |σ| and the
phase angle over this range of frequencies. The data is very well fit by

|σ(ω)| = B

ω2/3
+ C (3.5)

In contrast, the phase angle of the conductivity, arg σ varies only slightly from 65◦. The slight
variation in the phase angle is enough so that the real and imaginary parts of the conductivity do
not individually follow simple power laws over the range indicated in Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|σ|−C) vs ωτ on a log-log plot. On the left we show three different choices for the lattice
wavenumber k0. On the right, we show three different temperatures. The fact that the curves all
form parallel straight lines for ωτ > 2 shows the power law fall-off with exponent −2/3 is robust.
Since the offset C depends on k0 and T , in Fig. 9 we have subtracted a different constant for each
curve.

different context in [23].
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Surprising	  power-‐law	  behaviour	  
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Scaling	  in	  High	  TC	  Superconductors	  
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-off σ(ω) ∼ ω−γ on the basis of a Luttinger liquid
model, with γ = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ω/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T � µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 × R2

regime.
However, a second explanation was put forward in [22] where it was argued that the σ ∼ ω−γ

behavior with γ ≈ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a σ(ω) ∼ ω−2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, σ(ω) follows a simple Drude form. However, for intermediate frequencies, |σ(ω)| has a power
law fall off (with constant offset) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.
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Story	  3:	  Non-‐Fermi	  Liquids	  



Landau	  Fermi	  Liquid	  Theory	  

Interac7ng	  Fermions	  	  
at	  density	  

Free	  fermions	  with	  	  
Fermi	  surface	  

RG	  flow	  



Except…	  



No	  Quasi-‐Par7cles	  

EE	  

Energy	  

Energy	  

Momentum	  

Good	  Par7cle	  
Fermi	  liquid	  

Unpar7cle	  
Non-‐Fermi	  liquid	  

Major	  open	  problem	  in	  theore7cal	  physics	  



Fermions	  in	  AdS/CFT	  

Solve	  the	  Dirac	  equa7on	  in	  this	  background:	  

�u(�x, t)

ρ(�x, t)

Tµν = . . .

∂µTµν = 0

∂µJµ = 0

Jµ = . . .

/Dψ −mψ = 0
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Sung-‐Sik	  Lee	  (2009)	  

E	  



Non-‐Fermi	  Liquids	  

•  Fermi	  Surface	  
•  Zero	  energy	  excita7ons	  at	  non-‐zero	  momentum	  

•  Excita7on	  spectrum	  depends	  on	  various	  parameters	  
•  	   Fermion	  mass,	  background	  geometry	  	  

EE	  

Cubrovic	  et	  al.	  (Leiden)	  	  
Liu	  et	  al.	  (MIT)	  (2009)	  



But	  there’s	  an	  instability…	  

Explored	  in	  detail	  by	  Hartnoll	  and	  collaborators.	  

…and	  a	  star	  forms	  in	  the	  bulk.	  	  
	  
This	  is	  an	  electron	  star.	  The	  low	  energy	  physics	  appears	  to	  be	  	  
that	  of	  a	  Landau	  Fermi	  liquid.	  ???	  	  

Hartnoll,	  Polchinski,	  Siverstein	  and	  Tong	  (2009)	  



For	  the	  Future	  

Understand	  the	  electron	  star	  in	  more	  detail	  



Summary	  

Holography	  very	  useful	  tool	  to	  explore	  aspects	  of	  	  
strongly	  interac7ng	  maSer	  



Much	  Much	  More…	  

Jet	  Quenching	  
	  Chesler	  and	  Yaffe	  

Quantum	  Turbulence	  
	  Adams,	  Chesler	  and	  Liu	  

Crystal	  Forma7on	  
	  Donos,	  GauntleS	  +	  many	  others	  

Lowest	  Landau	  Level	  Physics	  
	  Blake,	  Bolognesi,	  Tong,	  Wong	  



The	  End	  

Thank	  you	  for	  your	  aSen7on	  



Extra	  Material	  



•  Exponent	  depends	  on	  lahce	  spacing:	  

•  This	  is	  characteris7c	  of	  a	  locally	  cri>cal	  theory	  i.e.	  

•  	  More	  recently,	  a	  mechanism	  suggested	  to	  drive	  this	  to	  linear	  resis7vity.	  	  
	  	  

DC	  Resis7vity	  
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Figure 7: The left panel shows the DC resistivity plotted as a function of temperature for various

lattice spacings. On the right hand side we factor out the scaling (3.3, 3.4) and re-plot the same

data on a log scale. The lines denote a fit to the data including polynomial corrections to the

leading low temperature behavior. Both plots arise from a background with µ = 1.4 and the

lattice amplitude A0 = k0/2. The plots remain essentially unchanged for lattices of different
amplitudes.

point function of the charge density, evaluated at the lattice wavenumber. They then calculated

this two point function by perturbing the Reissner-Nordström AdS black hole and found

ρ ∝ T 2ν−1
(3.3)

where4

ν =
1

2

�
5 + 2(k/µ)2 − 4

�
1 + (k/µ)2 (3.4)

The exponent can be viewed as arising from the dimension ∆ = ν − 1
2 of the operator dual to the

charge density in the near horizon AdS2 region, evaluated at the lattice wavenumber k.
On the right hand side of Fig. 7 we plot ρ/T 2ν−1 for several values of the lattice wavenumber.

As discussed earlier, if our scalar field has lattice wavenumber k0, the charge density has lattice

wavenumber 2k0, so we have set k = 2k0 in (3.4). We have fit the data to ρ0 = T 2ν−1(a0 + a1T +

a2T 2 + a3T 3) and drawn the curves on the right hand side of Fig. 7. The fact that the curves all

approach nonzero, but finite, constants at low temperature shows that our data confirms the low

temperature scaling (3.3) with exponent (3.4) predicted in [12].

Note that as the temperature goes to zero, the dissipation goes to zero and the DC resistivity

vanishes. Thus the DC conductivity becomes infinite, as expected for a perfect lattice with no

dissipation.

4This is a manifestly scale invariant form of the exponent that was found in [12] and was first derived in a
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Hartnoll,	  Hofman	  (2012)	  

D-BRANES ON ALF SPACES

ds2 =
L2

z2

�
− gtt(z, x)dt

2 + gzz(z, x)dz
2 + gxx(z, x)(dx+ a(z, x)dz)2 + gyy(z, x)dy

2
�

ds2 =
L2

z2

�
− gttdt

2 + gzzdz
2 + gxx(dx+ a dz)2 + gyydy

2
�

Φ(x, z)

A0(z, x)

Φ ←→ O

m2
ΦL

2 = −1

Φ → zφ0 + z2φ1 + . . .

φ0 = A cos(kLx)

L = LCFT + µQ+ φ0(x, y)O

AdS2 ×R
2

ρ ∼ T 2ν−1

Gµν =
1

M2
pl

Tµν − Λgµν

Mpl ≈ 1027 eV
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Donos,	  Hartnoll	  (2012)	  



Navier-‐Stokes	  Equa7ons	  
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Evolu7on	  of	  Exact	  Results	  at	  Strong	  Coupling	  

•  ‘70s	  and	  ‘80s:	  Quan77es	  protected	  by	  symmetries	  and	  anomalies	  
•  Chiral	  Lagrangian	  

•  ’90s	  and	  ’00s:	  Quan77es	  protected	  by	  supersymmetry	  
•  BPS	  quan77es,	  superpoten7als	  

•  ‘00s	  and	  ’10s:	  Anything	  you	  like	  
•  But	  only	  in	  very	  par7cular,	  large	  N,	  theories	  


