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In 2012, previous hints (DoubleCHOOLZ,T2K, MINOS) for a
nonzero third mixing angle were confirmed by Daya Bay and
RENO: important discovery.
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Daya Bay, PRL 108 (2012) RENO, PRL 108 (2012)

Observed: 9901 neutrinos at far site,
Prediction: 10530 neutrinos if no oscillation

R =0.940 +0.011 (stat) £0.004 (syst)
sin? 26015 = 0.092 + 0.016 £ 0.005

Y.Wang, March 2012
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Present status of (standard) neutrino
physics

AmZ < Am3 implies at least 3 massive neutrinos.

| Normal ordering | |Inverted orderingl
| A i
f—on 4 — B
1—
AnlA2
- 3 b 4
M1 = MMmin M3 — Mmin
_ 2 2 _ 2 2 2
ma = \/mmin ATnsol mi = \/mmin_I_AmA A/'ns.ol
_ 2 2 _ 2 2
m3 = \/mmin ATnA mo = \/mmin T ATnA

Measuring the masses requires: m,;, and the ordering .
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Neutrino mixing

Mixing is described by the Pontecorvo-Maki-Nakagawa-
Sakata matrix, which enters in the CC interactions

Vo) = Z Ueilvi)

) _
Loo = (U;kaLﬁ/plaLW -+ hC)
V2 ; " Large angles

ci2  S12 0
U = —S192 C12 O
CPV? 0o 0 1

Solar, reactor 6. ~ 30° Atm, Acc. 04 ~ 45°

0 c13 O —srg\ [ 1 0 0
1\ 0 1 0 0 eio/? 0
0 e —s13 0 c3 0 0 e ~tas1 /2440
CPYV phase Reactor, Acc. 013 ~ 9° CPV Majorana phases
CPV is a fundamental question to answer, possibly
related to the origin of the baryon asymmetry.
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Phenomenology questions for the future

e What is the nature of neutrinos? Dirac vs
Majorana?

°* What are the values of the masses? Absolute
» scale (KATRIN,...?) and the ordering.

e [s there CP-violation? Its discovery in the next
generation of LBL depends on the value of delta.

% ¢ What are the precise values of mixing
angles? Do they suggest a underlying pattern?

e Is the standard picture correct? Are there NSI?
Sterile neutrinos?! Other effects!?

A wide experimental programme is under way.
See D.Wark’s talk.
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Open window on Physics beyond the SM

Neutrino physics gives a new perspective on physics BSM.

|. Origin of masses 2. Problem of flavour

This information is complementary with the one
which comes from flavour physics experiments and
from colliders.
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Nature of Neutrinos: Majorana vs Dirac

Neutrinos can be Majorana or Dirac particles. In the SM only
neutrinos can be Majorana because they are neutral.

Majorana condition v =Cp'

The nature of neutrinos is linked to the conservation of
the Lepton number (L).

* This is crucial information to understand the Physics
BSM: with or without L-conservation!

* Lepton number violation is a necessary condition for
Leptogenesis.

e Tests of LNV:

- At low energy, neutrinoless double beta decay,
- LNV tau and meson decays,

- collider searches.

11
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Neutrino Masses in the SM and beyond

In the SM, neutrinos do not acquire mass and mixing:

® like the other fermions as there are no right-handed
neutrinos.

MeCL,ER m,/ﬂ@

Solution: Introduce Vg for Dirac masses

® they do not have a Majorana mass term
M u{ Cur

as this term breaks the SU(2) gauge symmetry.
Solution: Introduce an SU(2) scalar triplet or gauge

invariant non-renormalisable terms (D>4). This term
breaks Lepton Number.
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Dirac Masses

Neutrino masses in the sub-eV range cannot be
explained naturally within the SM.
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Many theorists consider this explanation of neutrino masses
unnatural, unless an explanation can be given for the extreme

smallness of the coupling (e.g. large or warped extra-D models).
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Majorana Masses

If neutrino are Majorana particles, a Majorana mass
can be generated and can arise as the low energy
realisation of a higher energy theory.
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See-saw mechanism: type | at the GUT scale

* Introduce a right
handed neutrino N

* Couple it to the Higgs
and left handed neutrinos

m, = 22
\ My
( 0 1143p l
T
mp My My ~ 10" GeV

Wednesday, 13 February 13




The see-saw can emerge naturally in GUTheories: e.g.
SO(10). They provide the necessary elements: N, large M

and L violation.
- — | SO(10) \

SU(4)rsxSU(2).xSU(2)r
< SU(5)

SU(3)cxSU(2).xSU(2)rxU(1)e-L /
~

SU(3)cxSU(2)xU(1)y

They typically lead to relations between quark and
lepton masses. Understanding the origin of neutrino
masses might shed light on the physics at energy scales
which could not be tested directly in any experiments.
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As the temperature drops,

P
In the Early 4‘1@% only quarks are left:
UnIVeI’SG H>q; —SI @ }/ - I_’_‘B o ((= () L () )) Y “)——1()
o B~ Ny UL U.4 ‘

© The excess of quarks can be explained by Leptogenesis
(Fukugita, Yanagida): the heavy N responsible for neutrino
masses generate a lepton asymmetry.

: H'/ \C_ N N\ Observing L violation

H/\ﬁ 1 ¢ | and CPV would constitute

% N a strong hint in favour

/\ Y\ \ of leptogenesis as the
Ry =% a3 origin of the baryon

asymmetry.
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l
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Neutrino masses at the TeV scale

For smaller Yukawa couplings, small masses can arise from
new physics at the TeV scale: in principle testable at the

LHC by looking at same-sign dileptons.

e Gauge B-L: pp > Z' = NN

-------------
=

e See-saw type ll: Scalar Triplets

See-saw type |,
production is

o Iriplet see-saw. Triplet N
produced in gauge interactions

S
X 107 very suppressed: 3
10°% mdb + A0 . gt T —
f my, ~ — = = sin QMi pp — NTN° — (Tl5 ZW
7 . . . . . . . .
10 0 100 200 300 400 ® LEft-Right models via VR
m,(GeV)
o INverse or extended see-saw

Atre et al.,0901.3589 models
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Other models of Neutrino Masses

There are also other possibilities for generating neutrino
masses. For example

e via loops in models in which - ~.
Dirac masses are forbidden w ! N o

e Low energy see-saw: sterile neutrinos m<< GeV

o R-parity violating SUSY: neutrinos can mix with
neutralinos

Establishing the origin of neutrino masses requires to
have as much information as possible about the masses
and to combine it with other signatures of the models
(proton decay, LHC searches, LFV, sterile neutrinos, ...).
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The problem of flavour

Mixing in the leptonic sector is very different from the
quark one: angles are large (even 013!) and there can be
new sources of CP-violation. Neutrinos provide a
different perspective on the flavour problem.

Why three generations?

Why massive and flavour states
are not the same?

Why the angles have the values
measured?

What is the origin of CPV?
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Tri-(bi)maximal mixing:
implies the existence of flavour

Trying to symmetries, e.g. A4.
understand
the .
leptonic Quark-Lepton comPIementarlty:
flavour quark + lepton mixing ~maximal
structure
and its Quark-Lepton universality:
s | relation to the difference between mixing
the one might be due to smallness of
present in masses and mild hierarchy
the quark
sector.

Anarchy:
all entries in mass matrix of O(l)
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The precise values of the mixing angles have a strong
theoretical impact for understanding the flavour problem.
Symmetry motivated patterns:

1 1
i
UBM — —3 5 7§ =>923 2450,@12 = 45 ,(913 = (
1 1 1
2 2 /2
V2 1 0
V'3 V'3
[ — _ 1 1 1
T'BM 16 \/gl \{5
V6 V3 W2
C12 $12 0
_S12 _c12 1
ver=\ T T2
V2 V2 V2

Deviation from these patterns is expected theoretically, e.g.
GUTs, and is required by experimental data. Theoretical
models typically lead to correlations between parameters
(sum rules) or specific predictions for their values.
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Conclusions

e Neutrino masses cannot be accommodated in the SM
(at least in its minimal form): this is the first
particle physics evidence of physics BSM.

4,

e Masses are much smaller than those of other

fermions. Mixing is large, differently from the quark
sector.

* Understanding the origin of neutrino masses will shed
light on the physics beyond the standard model

possibly at scales which might not be tested in direct
experiments or in models reachable at the LHC.
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Connecting masses and mixing

In some models, the masses (and the type of neutrino
mass hierarchy) can be connected to the mixing. For
example

¢ ¢ € Normal mass hierarchy
my, = My e 1+4+e 1 maximal (923 , large AL
€ 1 1 € ~ )\
€ C23 S23 Inverted mass hierarchy
my, =mg | C23 € € maximal 3, large 612
S93 € € Le — LM — LT

Determining the mass hierarchy and the values of angles
is of critical importance to understand the physics BSM.
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Predictions for betabeta decay

The predictions for |[<m>| depend on the neutrino mass
spectrum

® NH (ml<<m2<<m3): |<m>| ~ 2.5-3.9 meV
/ ?.. T Gk / 2 X 29
\/ Amg cos? f13 sin” O + \/ Amatm' 44 l

® |[H (m3<<ml~m2): 10 meV < |<m>| < 50 meV

<> =

P ) S Gomay §ox 2 ) .
\/ Amatmg B = \/ (1—5111 260 sin” 2 >Amatm < \/ i

® QD (ml~m2~m3): 44 meV < |<m>| < ml

l<m>| ~mgyp,

2 . 2 _iao 2 " -
(COS“ 0o + sin” O 6‘“*1) cos” 013 + sin? f13e**3!
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Wide experimental program for the
future: a positive sighal would indicate
that L is violated!

SP from Nakamura, Petcov review in PDG
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Dependence on the oscillation parameters

e cos 2015
controls this term:

(1) ain = / Am3, cos 261,

o (913 determines the
cancellation in the NH
spectrum and consequently
the minimal value of |[<m>|.
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Determining neutrino masses with neutrinoless dbeta decay

e

l<m>| [eV]

o
i

o

o

l<m>| [eV]

NO

o If |<m>|> 0.2 eV, then
the neutrino spectrum is
QD.The measurement of
m| is entangled with the
value of the Majorana
phase.

e * If no signal for |[<m>|
~10 meV, then only NO
is allowed.

* If LBL experiments find
|O, neutrino are Dirac
particles (without fine-
tuned cancellations).
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by other LNV mechanismes.

Other mechanisms

Neutrinoless double beta decay can also be mediated

o Light sterile neutrinos
e Heavy sterile neutrinos

e R-parity violating SUSY .

e Extra dimensional models

o Left-Right models b

>

Deppisch, Hirsch, Pas, 1208.0727
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Experimental searches of betabeta decay

Neutrinoless double beta N(E)
decay proceeds in nuclei in 20538 0v 35
which single beta decay is

kinematically forbidden but

| double beta decay (A, Z) — (A,
Z+2) +2 e+ 2visallowed. :

Q E
B. Schwingenheuer, Annalen B Klopdoretal, 80 % C.L. B Exp. bounds + NME, 90 % C.L.
NMEs der Physik, 2012
: "Ge
90 : ‘GS(TZ\AM : |SBF§AQRPA : E:ggF’A
— "Se
- o8
S z e { =. z "“Mo
L7 L | | e s : e
TR T ! : : : 118
st b “"
RN e
SO s
d i
) } T 107
: Mgs (V) A.M. Rotunno, TAUP09
(B I a .
c : : : | Depending on treatment of
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hanks to Schoenert, EPS-HEPI |
® GERDA: 2011 ’X\

TR NS

EXO @ WIPP 2011

& L P5a

‘3"

B CUORE-0: 2011
M CUORE: 2014

Super-Nemo @ LSM:
Demonstrator2014

The new generation of experiments is
already taking data or nearly ready (e.g.,
EXO, KamLAND-ZEN, CUORE,
GERDA,...) and more powerful ones are
planned for the future (e.g., NExT, SNO
+, SuperNEMO, COBRA,...)!!

experiment

Heidelberg-
Moscow

Cuoricino

NEMO-3

EXO-200

Kamland-
Zen

GERDA-I/
GERDA-II

CANDLES

NEXT

Guore0/
Cuore

Majorana
Demo.

SuperNEMO
demo./total

SNO+

Table 3 Selection of 0v 3 experiments.

isotope mass method start /
[ka] end
past experiments
6Ge 11 ionization -2003
1307 11 bolometer ~ -2008
100Mo, 7,1 track. -2011
825 +calorim.
current experiments
136xe 175  liqud TPC  2011-
BT 330 liquid 2011-
scintil.
®Ge  15/35 ionization 2011/
2013-
8ca 035 scint. 2011-
crystal
funded experiments
136xe 100 gas TPC 2015
1301 10/200  bolometer 2012-
2015-
Ge 30 ionization 2013
8286 7/100  track.+calorin  2014-
[??
150Ng 44 liquid scint. 2013

B. Schwingenheuer, Annalen
der Physik, 2012
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GERDA

The GERmanium Detector Array

Phase I Il
Exposure [kg -yr] 15 100
Bg [counts/(keVkg-yr)] 1072 103

Upper limit mgz[eV]  0.23-0.39 0.09-0.15
A. Smolnikov, P Grabmayr PRC 81 028502(2010)

< L I e e L
3 °00E . data - 2vBB
4 el 42K
o L — model oy
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‘ LS ~  (enriched in 76Ge) ‘ o\ I
H‘F\E o 1 | 7 at LNGS.

— U I oo - o - 1.’/7 !gg ‘

water plant & I U !

radon monitor » N3 . i‘wm ll CUORE-O

water tank, @10m,
part of muon-veto detector

F. Cossavella, 16/10/12

CUORE=0: the detector

GERDA Sensitivity
~
| -
S
=~ 102%
,g L Phase Il
& [ oct2012] &
3 3
N l
3 J,,o"w ...........
[s)] o°
g 25 a‘
= 10 o
| @
- © O Current BI, 10 keV Window, 3.5kg BEGe 1,/5/2012
o
o = Claim (central value), Phys, Lett. B586 (2004) 198,
«+  HM 90 % CL Limit, Eur, Phys, J A12 (2001) 147
| |

0 20 40 60
11. Nov. 2011 Months of Running

33

will consist of a complete
CUORE tower: 52 TeO;
cubic crystal absorbers,
encapsulated in a

dedicated copper shield
at LNGS.
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EXO

EXO-200
location, at the
WIPP Site, USA,

1585 m.w.e.

1205.5608

SS

i NN |
102 N |\. P B¢ YA N B A2 ‘ 1R R\ N
1000 1500 2000 2500 3000 3500
energy (keV)

EXO-200 reported the first
results last summer, T(Onu) >1.6
0725 yrs for Xel 36 and
KamLAND-Zen last week:
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2 2
10* 1025 102
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T(Onu) >1.9 10425 yrs.
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Collider searches
In colliders, the dominant mechanism due to mixing is

1+
i / i

-/-,
- -+_ /'/
I' ‘ /) 1‘+
2 ayayYaVWa ” “€)
J NN NV NV 7 s
/ ”
p
» h >
N\ ’
- I N
ol

\ i
where N goes on resonance and the cross section
for the process can be approximated as

o(pp — UW) ~o(pp — (N)Br(N — (W) ~ |V

‘20.0

Searches will be controlled by production which
depends on the mixing.
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Sensitivity reachable at LHC

0 100 200 300 400
m,(GeV)

Atre et al.,,0901.3589

Luminosity: 100 fb -.
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Current limits from LHC

T W

T T T | T T T
- ATLAS

| | |
?D) - ATLAS @ Data S 1
1200 gr =34 pb”’ ODiboson Z. i _ 1 il
% ! I F0CD _ & L0001 det_34pb | LH C at
— 10F = Uncert. - i | .
s ¢ =N200GeV ) E— 7 TeV
S sf .
> : -
B b E I .
o ook 1 ATLAS, 1108.0366
i Bt |
: ............. )
2 ]
O 5()- i | | i | | | Jv | | i | | | | | r
0 >0 100 GeV 15& 0200 600 800 1000 1200 1400
mll [ c ] ( jets> ) mWR [GeV] CMS, I IO4.3 I 68
| Search Regioh \ ee \ J Hu \ ey | total |

Luminosity: ATLAS 34 pb -/

EDiss >80 GeV

I MC 0.05 0.07 0.23 0.35
( M S 3 5 P b - predicted BG | 0.23703 023102 | 0.74+£055| 1.240.8

observed 0 0 0 0

Hr > 200 GeV

Searches have resulted in no MC

predicted BG | 0.71£0.58 | 0.0110%7 | 0257037 | 0.9740.74

positive signal so far. LHCDb dbered | 0 0 1 1

. Low-pr
MC 0.05 0.16 0.21 041
has searched for di-muon et ine | oatEoor | 0sins B | os s

observed 1 0 0 1

d ecays Of B, i m P rOVi ng Sy HTh Ty total

T, enriched
MC 0.36 0.47 0.08 0.91

bou nds by 30-40’ PRL 108 and PRD.85. predicted BG | 0104010 | 0.17 014 | 0.0240.01 | 0.29 & 0.17

observed 0 0 0 0
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LNV and neutrino masses

Majorana masses violate lepton humber and conversely
lepton humber violation leads to Majorana masses.

~H
l/ I, ‘0‘
| N
Fermion
singlet
0" H

Minkowski, Yanagida, Glashow,
Gell-Mann, Ramond, Slansky,
Mohapatra, Senjanovic

I/L.H I/LH

Lepton number

A

See-saw Type |l

Scalar
triplet

>

1/ F l/  f

Magg, Wetterich, Lazarides,

Shafi. Mohapatra, Senjanovic,

Schecter,Valle

violation!

See-saw Type

l'/ L 0” H
Fermion Y
triplet

l/ L ’, H

Ma, Roy, Senjanovic,
Hambye
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For see-saw type I: £ = ~-YNL-H-1 / INMpN

mp, M N
In general we expect mixing
to be very small: 10 T
“ ¢ Without cancellations, there - L3;'§ A
is a contribution to neutrino PR
masses: 107 et
v &l
- m, ~ ﬁ ~ sin® OM "
M 10°
* Production is ol e
extremely suppressed e

m,(GeV)
In see-saw type |, all LNV effects are
suppressed at colliders. Other production
mechanisms need to be considered.

Kersten, Smirnov; Ibarra, Molinaro, Petcov; Mitra et al.
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N production can be large if Ns have other interactions.
With 3 N, B-L can be gauged and N can be produced via Z'.
Other models: triplet see-saw, loop models, see-saw type Il...

Even if neutrino masses are not generated at tree level, they
will be at higher loops and the bounds typically remain
significant. Example: see-saw with two heavy neutrinos.

L=YL-HN, +Y,L-HNS+ AN, Ny + ! NFCN; + uNICN,

0 Yv Ysv For
YrU ,LL/ A U = 0 and YQ =0
You A 1 tree-level masses are zero.

/ . . .
[t can be very large inducing neutrinoless double beta

decay without contradlctlng the bounds from neutrino
MasSSES. /L Y Mitra, Senjanovic, Vissani; Ibarra, Molinaro, Petcov

Aex T™Aa
tra 55 75 Na
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5mLL —

Neutrino masses are
generated at one loop.

Grimus, Lavoura 2002;
Aristizabal Sierra,Yaguna 201 1.

1

VoL VﬁL VoL VﬁL

7oy f 3 (M?/M7)  In(M?/Mj;)
amop " { M2 /M7 =1 } r

M2 /M2 — 1

YTY; M2 + 3M32

/

2 A2 P

1
e Inverse see-saw: dmy ~ =E
1
o Extended see-saw: omu~ s,
14 T r e
. FoTy
o
s |
28
S Q)
4- p
5 100 MeV
0
6 -4 -2 0 2 4 6 8

Log[M 1/MeV]

Y'Y: [3M?2 A4 M? A4
1 1 3 7 ln . 4+ H ln .
7T 2 W M ' My

Allowed regions for
heavy neutrino masses:
Inverse see-saw: small
region around 5GeV.
Extended see-saw: one of

the sterile neutrinos is
very light, M1<100 MeV.

Lopez-Pavon, Pascoli,Wong
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