$H \rightarrow \tau \tau$ Searches at the LHC

H. Fox Higgs-Maxwell Workshop 13.02.2013

Η→γγ

Measure 2 photons in the calorimeter (no track) and their opening angle α

ATLAS Combination 95% CL Limit on μ 10 **ATLAS** 2011 - 2012 ± 1σ ± 2σ $\sqrt{s} = 7 \text{ TeV}: \int \text{Ldt} = 4.6-4.8 \text{ fb}^{-1}$ Observed $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8-5.9 \text{ fb}^{-1}$ - Bkg. Expected **Excluded** region **CL** Limits 10⁻¹ 110 150 200 300 400 500 m_н [GeV ATLAS Preliminary √s = 7TeV, Ldt = 4.6-4.8 fb 10³ Combined observed \s = 8TeV, Ldt = 13 fb⁻¹ Combined expected 10 The significance of the signal at 10 125.0 GeV is 7.0 standard deviations 10⁻³ for ATLAS alone! 10-5 10⁻⁷ 10⁻⁹ 10-11

10⁻¹³

115

120

οσ 2σ

3σ

4σ

5σ

6σ

7σ

125

130

135

m_H [GeV]

Mass Combinations

$H \rightarrow ZZ J^P$ Measurement

Observables: The 2 Z masses Production angle Θ^* Decay angles ϕ_1 , ϕ , Θ_1 , Θ_2 Spin 0: no dependence on Θ^* and ϕ_1

Two different methods are employed: a Boosted Decision Tree (BDT) and a weighted Matrix Element approach (MELA)

J^P 0⁺ vs 0⁻, 0⁺ vs 2⁺, 0⁺ vs 2⁻

0⁺ is preferred over 0⁻ and 2⁻ at almost 2 σ 0⁺ vs 2m⁺ has an expected separation of <1 σ

0⁻ is the least likely hypothesis SM 0⁺ is clearly preferred

exclusion:

BDT (JP-MELA) analysis: 98.9% (99.7%) for 0^- , 84% (83%) for 2⁺m and 97.1% (97.5%) for 2⁻ CMS: 0^- disfavoured at CL_s of 2.4%

Higgs Signal Strength

Vector-Boson and Fermion Coupling

Interference between three different diagrams involving vector bosons (W) and fermions (t): One can measure the sign of the coupling and constructive or destructive (SM) interference.

H→ T_{had} T_{had} (VBF) Candidate

H→π

Like many other analyses this is in reality a complicated mix: $\tau \text{ lep } \tau \text{ lep } \tau \text{ lep } \tau \text{ had}; \tau \text{ had } \tau \text{ had}$ each of these is split into 7TeV (~4.6fb-1) and 8TeV (~13fb-1)

each of these has

2-4 sub-categories:

- VBF (2-jet)
- boosted (1-jet)
- VH production
- gluon fusion

Trigger conditions changed during the run

Table 2: The categorization of the $H \rightarrow \tau_{lep}\tau_{lep}$ analysis. The JVF cut is |JVF| > 0.75 for 7 TeV data, the lepton centrality is not applied for 7 TeV analysis, and the 0-jet category is not used for 8 TeV data analysis.

•	2-jet VBF	Boosted	2-jet VH	1-jet				
et)	Pre-	selection: exactly two le	eptons with opposite charges	·				
`	$30 \text{ GeV} < m_{\ell\ell} < 75 \text{ GeV} (30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$							
	for same-fl	avor (different-flavor) le	eptons, and $p_{T,\ell_1} + p_{T,\ell_2} > 3$	5 GeV				
	At least one jet with $p_T > 40 \text{ GeV} (JVF_{jet} > 0.5 \text{ if } \eta_{jet} < 2.4)$							
-	$\frac{E_{\rm T}^{\rm miss} > 40 \text{ GeV} (E_{\rm T}^{\rm miss} > 20 \text{ GeV}) \text{ for same-flavor (different-flavor) leptons}}{H_{\rm T}^{\rm miss} > 40 \text{ GeV for same-flavor leptons}}$ $0.1 < x_{1,2} < 1$							
-								
)		$0.5 < \Delta c$	$\phi_{\ell\ell} < 2.5$					
_	$p_{T,j2} > 25 \text{ GeV} (\text{JVF})$	excluding 2-jet VBF	$p_{T,j2} > 25 \text{ GeV} (\text{JVF})$	excluding 2-jet VBF,				
				Boosted and 2-jet VH				
-	$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 {\rm GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$				
-	$m_{jj} > 400 \text{ GeV}$	<i>b</i> -tagged jet veto	$\Delta \eta_{jj} < 2.0$	<i>b</i> -tagged jet veto				
_	<i>b</i> -tagged jet veto	_	$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$					
_	Lepton centrality and CJV		<i>b</i> -tagged jet veto					
-	0-jet (7 TeV only) Pre-selection: exactly two leptons with opposite charges Different-flavor leptons with 30 GeV $< m_{\ell\ell} < 100$ GeV and $p_{T,\ell 1} + p_{T,\ell 2} > 35$ GeV							
-								
	$\Delta \phi_{\ell\ell} > 2.5$							
-		b-tagged	l jet veto					
=								

$\mu \rightarrow \tau$ Embedding

Take $Z/\gamma^* \rightarrow \mu\mu$ data and replace the muon with τ track(s) and calorimeter information from $Z/\gamma^* \rightarrow \tau\tau$ simulation

No signal contamination Jets, underlying event, pile-up etc from data Correct kinematics Lower systematics

(c) Invariant mass $m_{\tau\tau}$ in $\tau_{\rm lep} \tau_{\rm had}$ channel

(d) Invariant mass $m_{\tau\tau}$ in $\tau_{had}\tau_{had}$ channel

Thad Thad Normalisation

Background templates in track multiplicity are derived from MC for $Z \rightarrow \tau \tau$ and from same sign data for multi jet events.

A 2D fit in the low mass region at pre-selection level is performed.

Mass Reconstruction

There are 2 (had-had) to 4 (lep-lep) neutrinos in the event

 \Rightarrow an exact mass reconstruction is impossible.

Visible Mass

invariant mass using only the visible quantities

Transverse Mass

visible quantities + MET

Collinear Mass

neutrinos are collinear with visible decay products

MET constrains the transverse neutrino direction

Missing Mass Calculator

A likelihood function is constructed for the neutrino direction w.r.t. the visible decay products

A.Elagin, P.Murat, A.Pranko, A.Safonov Nucl.Instrum.Meth. A654 (2011) 481-489

Event Numbers VBF

'n

MMC mass $m_{\tau\tau}$ [GeV]

Systematics

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$		
$Z \rightarrow \tau^+ \tau^-$					
Embedding	1-4% (S)	2–4% (S)	1-4% (S)		
Tau Energy Scale	_	4–15% (S)	3–8% (S)		
Tau Identification	_	4–5%	1-2%		
Trigger Efficiency	2-4%	2–5% misrec.	2–4%		
Normalisation	5%	4% (non-VBF), 16% (VBF)	9–10%		
Signal					
Jet Energy Scale	1-5% (S)	3–9% (S)	2-4% (S)		
Tau Energy Scale	_	2–9% (S)	4-6% (S)		
Tau Identification	_	4–5%	10%		
Theory	8–28%	18-23%	3–20%		
Trigger Efficiency	small	small	5%		

Limits by Channel

(c) Combined $H \rightarrow \tau_{had} \tau_{had}$

Conclusions

The existence of a new boson is firmly established.

The mass is $m_x=125.2 \pm 0.3$ (stat) ± 0.6 (sys) GeV

The CP quantum numbers 0⁺ are somewhat preferred

The signal strength/SM is 1.35 ± 0.19 (stat) ± 0.15 (sys)

The couplings (V/F and ggV/VBF) are consistent with a SM Higgs

Direct observation of the fermion coupling is still missing

 $H \rightarrow \tau \tau$ may be important for CP-violation measurement