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Motivation
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A light composite Higgs?

Light scalar from a strong sector:

spontaneous symmetry breaking 

1) global symmetry: G/H

2) dilatation invariance 

Phenomenology from effective lagrangians

Physics encoded in LEC
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EFT for NGB
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V (h) = 0 h 7! h+ c

Vanilla technicolor: ⇠ = 1 ruled out!

non-QCD dynamics - walking technicolor [Holdom, Yamawaki] - more later

L = f2
Tr |Dµ⌃|2 + . . . , ⌃ = ⌃0 exp[ihâT â/f ]

Higgs potential generated by the coupling to the SM fields 

m⇢ ⇠ g⇢f , mh ⇠ gSM v

[Georgi & Kaplan, ...]mh/m⇢ ⇠
p

⇠ = v/f
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EFT for the dilaton
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Spontaneous breaking to Poincaré needs fine tuning!  [Fubini 1976]

Explicit & anomalous breaking: �L = �Od , µ
d

dµ
� = �(�) 6= 0

V (') = '4
1X

n=0

cN (�O)
✓
'

f

◆n(�O�4)

nearly marginal breaking needed for a light dilaton!
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Hierarchies and scaling dimensions
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Linearized RG flows in a neighbourhood of a fixed point 

Associated IR scale:

g(µ) =

✓
µ

⇤UV

◆��D

g(⇤UV)µ
d

dµ
g = (��D) g +O(g2)

⇤IR ⇠ g1/(D��)
0 ⇤UV

(
D �� = O(1) g0 must be tuned

D �� ⌧ 1 natural hierarchy

Stable hierarchy related to weakly relevant operators. [Strassler 03, Sannino 04,Luty&Okui 04]

YM theory at the GFP is a limiting case:

⇤IR ⇠ ⇤UV exp{� 1

�0g2
}

Global-singlet relevant operators (GSRO) require fine-tuning.
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DEWSB from CFT
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Strongly interacting CFT responsible for EWSB: 

YM theory coupled to massless fermions

ΛTC

METC

Λ QCD

ΛTC<ΨΨ> =
3

TC

ETC

SM

flavor

gauge GeV

TeV

???

In the SM the elementary scalar generates a GSRO: dim(H†H) ' 2

[Weinberg, Susskind]
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Flavor sector - fermion masses
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In the SM fermion masses are generated by Yukawa interactions

LY = yu HL̄uR + yd H†L̄dR dimension = 1+3 = 4

In models of DEWSB: scalar is composite  [Dimopoulos et al 79, Eichten et al 1980]

dimension = 3+3 = 6

Tension with suppressing FCNC

f

⇤2
UV

q̄qq̄q dimension = 6

LY =
y

⇤2
UV

Q̄Q q̄q

Friday, 6 September 13



Walking TC

8

Alleviate the problem due to the large dimension of the composite scalar

Theory at the EW scale is near a non-trivial fixed point

Scaling dimension of the fermion bilinear is smaller

Small dimension for H allows a better description of the flavor sector, BUT

dim(H) ' 1 =) dim(H† H) ' 2

In a strongly coupled theory we could have: 

dim(H) small, but dim(H† H) > 2 dim(H)

dim(Q̄Q) = 3� � [Holdom,Yamawaki,Appelquist,Eichten,Lane]

[Sannino 04, Luty 04, Rattazzi et al 08]
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Simple illustration
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ETC

mq ⇠ hQ̄QiETC

⇤2
ETC

=
1

⇤2
TC

✓
⇤ETC

⇤TC

◆��2

hQ̄QiTC ⇤TC = 4⇡F, hQ̄QiTC = ⇤3
TC

mq ' 1000 GeV (1.0⇥ 10�3)2��

� ' 1 ) mb

� ' 1.75 ) mt

K 103 TeV

D 1.5⇥ 103 TeV

Bd 0.21⇥ 103 TeV

Bs 0.03⇥ 103 TeV

Bounds on the ETC scale

SM fermion masses:

[Chivukula 12]
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Couplings to SM
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L =
M2

V

2
V 2
µ

✓
1 + 2a

S

v
+ b

S2

v2

◆
�mf  ̄ (1 + c

S

v
)

generic coupling of a scalar field - model independent

� = 1 + ✏
deviation from the elementary scalar free field

rescaled SM dependence on the an. dim. 

SM : a = b = c = 1

SILH : a =
p
1� ⇠, b =

p
1� 2⇠, c =

p
1� ⇠

SILD : a = b =
p
⇠, c = �

p
⇠ [Contino 10]
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Decay modes - dilaton Higgs-like scalar
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[Chacko et al 2012]
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Best fit 2012/2013
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Figure 1: The 1� (yellow) and 2�(green) CL regions of the plane (�, ⇠). At each point
the �2 has been minimized w.r.t. ✏ in the range 0  ✏  0.6. The black star corresponds
to the best-fit point and the black cross is the location of the SM-Higgs-like dilaton. The
dashed line corresponds to the 2� contour applying the further constraint ✏ � 0.35

result very similar to the global one for CMS, while ATLAS tends to prefer larger

⇠, due to the larger rates in WW and ZZ modes.

To visualize the global constraint on ⇠ in Figure 1 we show the the 1� and

2� CL regions of the �2 minimized w.r.t ✏ in the plane (�, ⇠) . The current data

prefers rather large values of ⇠, in the domain of technicolor-like models. However

pNGB-like values of ⇠ ⇠ 0.3 are still allowed within 2�.

We remark that in the minimization on ✏ performed in Figure 1 the value of

✏ tends to hit the lower boundary of the imposed range. As explained in the

discussion that lead to Eq. (8), the value of ✏ is largely determined by the rates

of the VBF and GF production modes. In the current data the most precise

measurements are those in �� and the GF-dominated channels do not exhibit

a larger excess than VBF. As a consequence ✏ is driven to the minimal allowed

value.

The strength of this pull can be visualized in Figure 2 where we show the

24

[Chacko et al 2012, Falkowski et al 2013]
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Figure 3: Left: The 68% (darker green) and 95% (lighter green) CL best fit regions in the cV -cf parameter

space. The yellow regions are fits without the EW data. The color bands are the 1� regions preferred by

the Higgs data in the �� (purple), WW (blue), ZZ (red), ⌧⌧ (brown), and bb (mauve) channels. Right: Fit

to the parameter ✏ = v/f in sample composite Higgs models with (black) and without (gray) including EW

precision data. The di↵erent lines correspond to the SO(5)/SO(4) coset and fermionic representations with

m = 0 and n = 0 (solid), n = 1 (dashed) and n = 2 (dot-dashed).”

two Higgs doublets structure of the scalar sector makes it possible to induce significant mod-

ifications of the LO Higgs couplings to fermions, with very small modifications to cV and the

NLO Higgs coupling. The form of these deviations is well-known, and in the limit where the

remaining scalars in the Higgs sector are heavier mH & v/
p
2 and can be integrated away,

they reduce to [38, 39],

cb,⌧ ⇡ 1� � tan �
v2

m2
H

, ct ⇡ 1 + � cot �
v2

m2
H

, (5.4)

where tan � > 1 and � depends on the underlying physics that contributes to the Higgs mass

(for instance � > 0 in the MSSM and in models with additional D-terms, while � < 0 in

the NMSSM) [39]. Corrections to cV arise at higher order in the v/mH expansion and are

typically very small.

We show the fit to cb and ct in Fig. 4. SUSY models imply deviations which lie in the

upper-left or lower-right quadrant unless scalar singlets mix with the Higgs. The best-fit

region at negative ct preferred in the previous fits [38, 39] is now only marginally allowed

after including the latest CMS results in the �� channel [4].

16
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Phase diagram of SU(N) gauge theories

13

Use lattice tools to search for IRFPs in 4D SU(N) gauge theories

Light dynamical fermions are needed: results only in the last six years

Fund

2A

2S
Adj

Ladder

Catterall, Sannino

Del Debbio, Patella,Pica

Catterall, Giedt, Sannino, Schneible

Iwasaki et al.

Appelquist, Fleming, Neil

Deuzeman, Lombardo, Pallante 

×

×

� = 1 � = 2

Shamir, Svetitsky, DeGrand

Non-SUSY Phase Diagram Bound

Ryttov and F.S. 07All Orders Beta Function

Gauge/string duality [Nunez, Piai, Pomarol, Anguelova], RG [Braun, Gies], Dyson-Schwinger
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Mass-deformed CFT
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• The identification of a CFT by numerical simulations is a difficult task

• No massive spectrum; power-law behaviour of correlators at large distances

• Numerical simulations are performed at finite fermion mass, and/or in a finite-volume 
box; both the mass and the finite volume break scale invariance in the IR

• Consider a CGT deformed by a mass term/finite volume

• Determine the scaling of physical observables

O � m⌘O
+ higher order in m+ terms analytic in m

MH / µm
1

1+�⇤
[LDD, Zwicky 10-13]
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Conformal spectrum

• Different qualitative behaviours in the chiral limit

15

QCD-like conformal

mPS

Λhad

mPS

ΛYM

no GB bosons

ChPT at low energies
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Spectrum for SU(2) + 2 adjoint fermions

• Overall picture: non-singlet meson states & glue

16
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[LDD et al 09]
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Finite volume effects?
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Finite volume effects

Qualitative evidence for a conformal spectrum 
Need large lattices and small masses to control systematic errors
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Larger volumes - heavier mass
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Preliminary
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Figure 3. Mode number per unit volume for the set S1 (am0 = �1.15 on a 64 ⇥ 243 lattice): lattice

data and fit result in log-log scale. The reference fit is S1:F4 in table 6. The parameters in the axis labels

have been chosen to be a�4⌫̄0 = 1.31 ⇥ 10�5 and am = 0.0826 (best-fit results). The black points are the

data computed by numerical simulations. The red line is the best fit to eq. (3.8), while the orange band

corresponds to the 1� region. The blue dashed lines delimit the data used for the fit.

4.3 Set S2: finite-volume e↵ects

As analyzed in [23], meson masses computed on the set S1 (am0 = �1.15 on 64⇥ 243) are identical

to the ones computed on the set S2 (am0 = �1.15 on 64 ⇥ 323), within the statistical errors that

are of the order of 0.5%. It is reasonable to expect that finite-volume e↵ects are under control

also for the mode number. However this is explicitly checked by computing the mode number per

unit volume using the projector method for few values of a⌦. The agreement is always within

1� as shown in table 4. Since larger finite-volume e↵ects are expected for lower eigenvalues, we

can conclude that the finite-volume e↵ects for the set S1 are always negligible with respect to the

statistical errors for a⌦ � 0.086.

4.4 Set S3: lighter mass

The set S3 (am0 = �1.18 on 64⇥243) is used to check the stability of the  ̄ anomalous dimension

while going closer to the chiral limit. For this set no detailed investigation of finite-volume e↵ects

is available. However the isotriplet pseudoscalar meson is expected to be about 10% lighter than

in infinite volume (see analysis in [23]). Similarly one has to expect sizable finite-volume e↵ects

also for the spectral density at low eigenvalues, while for larger eigenvalues the finite-volume e↵ects

become smaller. I will work under the assumption that the finite-volume e↵ects are comparable in

the two sets S1 and S3 at fixed eigenvalue. Therefore the analysis is restricted to the safe range

a⌦ � 0.086.

– 8 –

Dirac Eigenvalues

22

can be isolated via a twice-subtracted spectral representation:

〈q̄q〉 = −2m

∫ µ

0

dλ
ρ(λ)

m2 + λ2
− 2m5

∫ ∞

µ

dλ

λ4

ρ(λ)

m2 + λ2
+ γ1m+ γ2m

3 . (25)

The subtraction constants γ1 and γ2 contain the UV-divergences. Their respective be-

haviours are γ1 ∼ Λ2
UV, and γ2 ∼ log [Λ2

UV], and their actual values depend on two physical
renormalization conditions used to define the finite condensate on the LHS of Eq. (24).
We shall investigate the limiting behaviour when m → 0. The second integral and the

subtraction terms in Eq. (25) vanish in the chiral limit (m → 0). Therefore only the
first integral, sensitive to the IR region, can result in a non-analytic term and has to be

investigated further. A simple change of variable yields:

〈q̄q〉 = −2

∫ µ/m

0

dx
ρ(mx)

1 + x2
+A(m) , (26)

where A(m) stands for an analytic function of m. From Eq. (26), following the same
arguments used in QCD, one can readily obtain:

〈q̄q〉 m→0∼ mηq̄q ⇔ ρ(λ)
λ→0∼ ληq̄q . (27)

This in turn implies:

ηq̄q|QCD−like = 0 , ηq̄q|mCGT > 0 , (28)

since in QCD the condensate remains finite in the chiral limit, while it vanishes in mCGT.

Let us derive the same scaling coefficient ηq̄q (4) from a RG analysis. The starting point
is the two-point function Cq̄q(t; m̂, µ), as in Eq. (8), where the hadronic field H = q̄q, and
the explicit dependence on the coupling g is suppressed. The solution of the RG equations

for this specific case is:

Cq̄q(t; m̂, µ) = b−2∆q̄qCq̄q(tb
−1; bymm̂, µ) . (29)

Imposing again bymm̂ = 1, finally leads to:

Cq̄q(t; m̂, µ) = m̂
2∆q̄q
ym Cq̄q(tm̂

1/ym ; 1, µ) . (30)

Inserting a complete set of states the exponential decrease of any state other than the

vacuum for large t results in:

Cq̄q(t; m̂, µ)
t→∞∼ m2ηq̄q , (31)

whence the scaling exponent (27) follows:

ηq̄q =
∆q̄q

ym
=

3− γ∗
1 + γ∗

. (32)

10

Scaling of the eigenvalue density:

Measure the mode number of  D†D +m2

[DeGrand 09, LDD & Zwicky 10, Patella 12]

�⇤ = 0.37(2)

[Patella 12]

⌫(M,m) = C +
�
M2 �m2

�2/(1+�⇤)

Figure 11: Modenumber per unit volume: lattice data and fit results in log-log scale. The
blue dots are the data points from Table 1. The red curve is the best fit line with the
parameters we determined. The two vertical green lines delimit the data used for the fit
i.e. between points 29 and 48.

24

�⇤ = 0.38(2)

160⇥ 163,m ⇡ 0

[Roman 13]
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Finite-size scaling 

23

FSS for the masses in the spectrum:

MH = L

�1
f(x)

In order to recover the correct scaling with m at infinite volume:

f(x) ⇠ x

1/ym
, as x ! 1

If we go to the massless limit, at fixed volume and cut-off, the masses of the states in the 
spectrum of the theory saturate and scale as:

MH / L�1

x = L

ym
m
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FSS - example
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FSS - asymptotic behaviour
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Conclusions

26

Spectrum in the mesonic sector is under control - confirm our earlier observations

Data are consistent with conformal scaling

Lighter states in the gluonic sector are difficult (variational method, centre symmetry)

Eigenvalues of Dirac operator yield the best determination of the anomalous dimension

FSS compatible with lattice data

Consistent picture in agreement with a IRFP

Other models more phenomenologically appealing? 
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