Radiative decays of charmonium

F.Sanfilippo

In collaboration with D. Becirevic

Based on "Lattice QCD study of the radiative decays $J/\psi \rightarrow \eta_c \gamma$ and $h_c \rightarrow \eta_c \gamma$ " D.Becirevic and F.Sanfilippo, arXiv:1206.1445, JHEP 1301 (2013) 028

September 5, 2013

$J/\psi \rightarrow \eta_c \gamma$ radiative decay

- $\Gamma(J/\psi \rightarrow \eta_c \gamma)$ experimental situation
- 2 Theoretical puzzle
- 3 Lattice computation

$h_c ightarrow \eta_c \gamma$ radiative decay

- $\Gamma(h_c \rightarrow \eta_c \gamma)$ lattice determination
- Operation 2 Comparison with recent experimental determination

Decays of radially excited states

Preliminary study of $\psi' \rightarrow \eta_c \gamma$ and $\eta_c (2S) \rightarrow J/\psi \gamma$

 $J/\psi \to \eta_c \gamma$ radiative decays

$J/\psi \rightarrow \eta_c \gamma$ radiative decay

Current experimental situation is unclear

- $\Gamma\left(J/\psi
 ightarrow\eta_{c}\gamma
 ight)_{
 m PDG}=\left(1.58\pm0.37
 ight)$ keV:
 - Crystal Ball ('86): (1.18 ± 0.33) keV
 - CLEO ('09): $(1.91 \pm 0.28 \pm 0.03)$ keV

PDG heavily influenced by Crystal Ball

- KEDR (arXiv:1002.2071): $(2.17 \pm 0.14 \pm 0.37)$ keV (preliminary) final result expected this year
- BESIII will hopefully clarify the situation

Theoretical predictions are inconclusive

- Dispersive bound from $\Gamma(\eta_c \to 2\gamma)$: $\Gamma(J/\psi \to \eta_c \gamma) < 3.2 \text{ keV}$ [M.A. Shifman, Z. Phys. C 6 ('80)]
- Two QCD sum rule calculations gave two different results:
 - ullet \sim (1.7 \pm 0.4) keV [A.Y. Khodjamirian, Sov. J. Nucl. Phys. 39 ('84)]
 - ullet \sim (2.6 \pm 0.5) keV [Beilin and Radyushkin, Nucl. Phys. B 260 ('85)]
- Potential non relativistic QCD $(1.5 \pm 1.0) \text{ keV}$ [N.Brambilla et al, PRD73 ('06)]
- Potential Quark Models:
 - $\sim 3.3 \, \mathrm{keV}$ [M.B Voloshin, Prog.Part.Nucl.Phys. 61 ('07)]
 - $\sim 2.85 \, \mathrm{keV}$ [E. Eichten et al., RMP80 ('08)]

Lattice QCD computations

- Quenched and single lattice spacing: 2.51(8) keV[J.J Dudek et al., PRD 79 ('09)]
- Unquenched but still single lattice spacing: 2.77 (5) keV[Chen et. al, PRD 84 ('11)]

Both results obtained at large negative q^2 's , then extrapolated to $q^2=0$

Lattice QCD

Desired features

Continuum: Several lattice spacings to take continuum limit

Renormalization: Non perturbative

Momentum: Work directly at $q^2 = 0$ to avoid the q^2 extrapolation

Unquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...

Continuum: 4 different lattice spacings ($a \in [0.054; 0.100]$ fm) Renormalization: Non perturbative (RI-MOM) Momentum: Work at $q^2 = 0$ using twisted boundary conditions Unquenching: Only 2 dynamical light quarks ($M_{\pi} \in [280; 500]$ MeV)

- Wilson regularization of QCD with twisted mass term (tmQCD)
- QCD gauge field configurations produced by ETM collaboration

Form factor computation

$$\Gamma\left(J/\psi
ightarrow \eta_{c}\gamma
ight) \propto \left|\left\langle \eta_{c}\left|J^{em}
ight|J/\psi
ight
angle
ight|_{q^{2}=0}^{2}$$

Three point correlation functions

$$C^{(3)}(t) = \langle \sum_{\vec{x},\vec{y}} e^{-i\vec{p}\vec{x}} O_{\eta c}(\vec{x},T) J_{em}(\vec{y},t) O^{\dagger}_{J/\psi}(\vec{0},0) \rangle$$

at intermediate times:

$$\underset{\simeq}{\overset{0 \ll t \ll T}{\simeq}} \tau \frac{Z_{J\psi} Z_{\eta c} \exp\left[\left(E_{\eta c} - M_{J/\psi}\right) t\right] \left\langle \eta_{c} \left| J_{j}^{em} \right| (J/\psi)_{i} \right\rangle}{4M_{J/\psi} E_{\eta c}}$$

Two points correlation functions: used to remove the sources

 $C^{(2)}(t) = \sum_{\vec{x}} \langle O_{\eta_c}(\vec{x},t) O_{\eta_c}^{\dagger}(\vec{0},0) \rangle$ at large times: $\stackrel{t \to \infty}{\simeq} Z_{\eta_c}^2 \exp(-E_{\eta_c} t)/2E_{\eta_c}$ and similarly for J/ψ .

Two points correlation function computation

Compute full quark propagator

- Choose a lattice discretization of QCD, and numerically sample gauge field configuration space with corresponding distribution weight
- Compute propagator solving discrete Dirac equation on gauge background: D (y,x) · S (x, 0) = δ_{y,0}

• So S is the fully non perturbative propagator

Combine 2 propagators with suitable Dirac structures

Matrix element $\langle \eta_c \left| J_j^{em} \right| (J/\psi)_i \rangle$ (example)

Combine with $C^{(3)}$ with Z and M determined from $C^{(2)}$

$$R(t) \equiv \frac{4M_{J/\psi} \mathcal{E}_{\eta c} C_{ij}^{(3)}(t)}{Z_{J\psi} Z_{\eta c} \exp\left[\left(\mathcal{E}_{\eta c} - M_{J/\psi}\right)t\right]} \stackrel{0 \ll t \ll T}{\simeq} \langle \eta_c | J_j^{em} | (J/\psi)_i \rangle$$

NB: very accurate determination of $\Delta M = M_{J/\psi} - M_{\eta_c} = 112(3)$ MeV

Continuum limit extrapolation

Our final result

- Putting everything together we get: $\Gamma(J/\psi \to \eta_c \gamma) = 2.58 (13) \text{ keV}$
- Our value is clearly:
 - larger than Crystal Ball('86) 1.18(33) keV
 - compatible with CLEO('09) 1.91(30) keV, and KEDR('10) 2.17(40) keV

Recent developments

New lattice study

• HPQCD collaboration (PRD86 (2012) 094501) soon after reported results:

- using a totally different regularization ('HISQ')
- including also dynamical strange quark (i.e. 5s pairs creation)
- They show that $\langle \eta_{\epsilon}|J_{j}^{em}|(J/\psi)_{i}\rangle$ does not depend on m_{s}^{sea}
- Excellent agreement with our result in the continuum limit:

$$\Gamma_{J/\psi \to \eta_{c}\gamma} = 2.49 (19) \text{ keV}$$

Improved pNRQCD determination

• Pineda & Segovia (PRD87, 2013) improved description of M1-decays

- exact inclusion of the static potential in the low energy hamiltonian
- resummation of large logs by means of RGE

ullet Cancellation of renormalon ambiguity o smaller uncertainty

$$\Gamma_{J/\psi o \eta_c \gamma} = 2.14(40) \, \mathrm{keV}$$

Is the $J/\psi \rightarrow \eta_c \gamma$ puzzle solved?

- Two different lattice approaches give the same results in the continuum
- On the theory side the problem is solved
- This becomes a precision test of QCD
- The experimental situation needs to be clarified

$h_c \rightarrow \eta_c \gamma$ radiative decays

Facts about h_c meson

h_c : charmonium $J^{PC} = 1^{+-}$ state

- Elusive for many years
- Finally observed at CLEO (2005)
- BaBar confirmed (2008): $B \to X_{\bar{c}c} K^{(*)}$, through dominant $X_{\bar{c}c} \to \eta_c \gamma$
- BESIII (2010) observed $\psi' \rightarrow h_c (\rightarrow \eta_c \gamma) \pi^0$

PDG

•
$$m_{h_c} = 3525.4(1) \,\mathrm{MeV}$$

•
$$\Gamma(h_c) = 0.7(4) \,\mathrm{MeV}$$

•
$$\mathcal{B}(h_c \rightarrow \eta_c \gamma) = 51(6)\%$$

$$\Gamma(h_c
ightarrow \eta_c \gamma) = 0.36(21) \, \mathrm{MeV}$$

• No QCD based estimate for $\Gamma(h_c \rightarrow \eta_c \gamma)$

• At our study times, $\Gamma(h_c o \eta_c \gamma)$ was still experimentally unknown!

$h_c ightarrow \eta_c \gamma$ radiative decay

• We need further experimental studies to assess the discrepancy

- Would be great if other theoretical study were studied as well
 - use other lattice discretization
 - improve pNRQCD for E1-transitions
 - try also QCD sum rule

Radiative decays of

excited charmonium

Decays of radially excited charmomium (preliminary)

Radiative decays of an excited states to the ground state

- Easier to measure for experimentalists
 - more energetic photons easier to recognize
 - more phase space w.r.t ground state decays
- Harder for theorists:
 - models and effective theories predictions are unreliable (very sensitive to high order relativistic correction)
 - lattice: reliable separation of excitation and ground state is difficult

Spectral decomposition of two points correlation function

$$C_{2pt}(t) = a_1 e^{-M_1 t} + a_2 e^{-M_2 t} + a_3 e^{-M_3 t} + \dots$$

- How to separate different states?
 - \rightarrow we use several operators with the same quantum numbers
- \bullet Smeared operators: operators with different spatial distribution \rightarrow different couplings to states

Spectral decomposition of 2pts pseudoscalar corr. function

 $\psi' \to \eta_c (1S) \gamma$

Form factor for $\psi' \rightarrow \eta_c \gamma$ very small: negligible decay width

- Compatible with findings of J.J Dudek et al, PRD 79 ('09)
- In line with experiments, that finds very small $\Gamma(\psi' \rightarrow \eta_c \gamma)$

 $\eta_c (2S) \rightarrow J/\psi \gamma$

Form factor for $\eta_c(2S) \rightarrow J/\psi\gamma$ sizable: non negligible decay width

- Never explored in lattice before, never measured in experiments
- Caveat: no continuum limit

Conclusions

Results

First full determination of J/ $\psi \rightarrow \eta_c \gamma$, $h_c \rightarrow \eta_c \gamma$ form factors:

- high statistics unquenched simulations
- continuum extrapolation under control
- non-perturbatively renormalized

Preliminary study of excited-to-ground state decays

Main message from Lattice QCD side

- Finally assessed theoretical estimate of $\Gamma(J/\psi \rightarrow \eta_c \gamma)$
- Found a (small) discrepancy for $\Gamma(h_c \rightarrow \eta_c \gamma)$
- Indication of sizable $\Gamma(\eta_c(2S) \rightarrow J/\psi\gamma)$

Main message for experimentalists

Radiative decays of charmonium could become a precision test of QCD but

- Indispensable to clarify $\Gamma(J/\psi \rightarrow \eta_c \gamma)$
- Improve the measurement of Γ_{h_c}
- Measure $\Gamma\left(\eta_{c}\left(2S
 ight)
 ightarrow J/\psi\gamma
 ight)$

Backup slides

Dependence on light quark mass

Insensitive to variation of the light sea quark mass m_{ℓ}^{sea} (expected because $m_{c}^{val} \gg m_{\ell}^{sea}$) Expected insensitivity to the dynamical strange quark ($m_c \gg m_s \gg m_{\ell}^{sea}$)

Can we do charm physics on current lattices?

Some back of the envelop calculation

- Lattice spacings: $a \sim 0.050 \div 0.100$ fm, $1/a \sim 2 \div 4$ GeV
- Charmed meson mass: $M_{D^\pm}=1.87$ GeV, $M_{J/\Psi}=3.1$ GeV

To study charm physics on such lattices seem questionable but...

Some deeper calculation

- In the free theory the cut off is given by $p_{max}=\pi/a\sim 6\div 12$ GeV!
- Seems to be almost good also to study *b* quark...

Cutoff of interacting theory is unknown: only actual computations can teach us

How to keep the situation under control?

Having 4 different lattice spacing, and $\mathcal{O}(a)$ improved theory allows:

- $\bullet\,$ to drop coarsest lattice spacing and check for stability of $a \to 0$ limit
- to assess the convergence $\propto a^2$ to the continuum limit: $\Phi^{latt} = \Phi^{cont.} + \Phi' a^2$

Determination of the charm quark mass

Wick contraction

$$C(\tau) = \sum_{\vec{x}} \left\langle O^{\dagger}(\vec{x},\tau) O\left(\vec{0},0\right) \right\rangle \underset{Wick}{=} \operatorname{Tr}\left[\Gamma S_{I}\left(\vec{x},\tau;\vec{0},0\right) \Gamma S_{c}\left(\vec{0},0;\vec{x},\tau\right) \right]$$

Quark propagator calculation

Solving Dirac equation on gauge background provides full quark propagator

In practice

- D operator and the propagator S are large matrices ($O(10^9)$ lines)
- Solving Dirac equation requires large amount of CPU resources

Other two precise tests of SM

