Radiative decays of charmonium

F.Sanfilippo

In collaboration with D. Becirevic

Laboratoire de Physique Théorique

Université Paris Sud XI, Orsay, France

Based on "Lattice QCD study of the radiative decays $J/\psi \to \eta_c \gamma$ and $h_c \to \eta_c \gamma$ " D.Becirevic and F.Sanfilippo, arXiv:1206.1445, JHEP 1301 (2013) 028

September 4, 2013

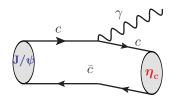
Summary

$J/\psi ightarrow \eta_c \gamma$ radiative decay

- **1** $\Gamma(J/\psi \to \eta_c \gamma)$ experimental situation
- 2 Theoretical puzzle
- Lattice computation

$h_c \rightarrow \eta_c \gamma$ radiative decay

- **1** $\Gamma(h_c \to \eta_c \gamma)$ lattice determination
- 2 Prediction for Γ_{h_c}

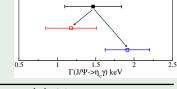

New: decays of radially excited states

Preliminary study of $\psi' \to \eta_c \gamma$ and $\eta_c(2S) \to J/\psi \gamma$

$J/\psi \to \eta_c \gamma$

radiative decays

$J/\psi ightarrow \eta_c \gamma$ radiative decay



Current experimental situation is unclear

 $\Gamma(J/\psi o \eta_c \gamma)_{\mathrm{PDG}} = (1.58 \pm 0.37)\,\mathrm{keV}$:

- Crystal Ball ('86): (1.18 ± 0.33) keV
- CLEO ('09): $(1.91 \pm 0.28 \pm 0.03)$ keV

- KEDR (arXiv:1002.2071): $(2.17 \pm 0.14 \pm 0.37)$ keV (preliminary) final result expected this year
- BESIII will hopefully clarify the situation

$J/\psi o \eta_c \gamma$ radiative decay

Theoretical predictions are inconclusive

- Dispersive bound from $\Gamma(\eta_c \to 2\gamma)$: $\Gamma(J/\psi \to \eta_c \gamma) < 3.2 \text{ keV} \text{ [M.A. Shifman, Z. Phys. C 6 ('80)]}$
- Two QCD sum rule calculations gave two different results:
 - ullet \sim (1.7 \pm 0.4) keV [A.Y. Khodjamirian, Sov. J. Nucl. Phys. 39 ('84)]
 - ullet \sim (2.6 \pm 0.5) keV [Beilin and Radyushkin, Nucl. Phys. B 260 ('85)]
- ullet Potential non relativistic QCD (1.5 \pm 1.0) keV [N.Brambilla et al, PRD73 ('06)]
- Potential Quark Models:
 - ullet $\sim 3.3 \, \mathrm{keV}$ [M.B Voloshin, Prog.Part.Nucl.Phys. 61 ('07)]
 - ullet $\sim 2.85 \, \mathrm{keV}$ [E. Eichten et al., RMP80 ('08)]

Lattice QCD computations

- Quenched and single lattice spacing: 2.51(8) keV[J.J Dudek et al., PRD 79 ('09)]
- \bullet Unquenched but still single lattice spacing: 2.77 (5) $keV[\mbox{Chen et. al, PRD 84 ('11)}]$

Both results obtained at large negative q^2 's, then extrapolated to $q^2 = 0$

Lattice QCD

Desired features

Continuum: Several lattice spacings to take continuum limit

Renormalization: Non perturbative

Momentum: Work directly at $q^2 = 0$ to avoid the q^2 extrapolation

Unquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...

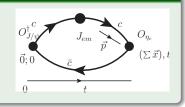
Continuum: 4 different lattice spacings ($a \in [0.054; 0.100] \text{ fm}$)

Renormalization: Non perturbative (RI-MOM)

Momentum: Work at $q^2 = 0$ using twisted boundary conditions

Unquenching: Only 2 dynamical light quarks ($M_{\pi} \in [280; 500] \text{ MeV}$)

- Wilson regularization of QCD with twisted mass term (tmQCD)
- QCD gauge field configurations produced by ETM collaboration


Form factor computation

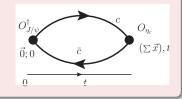
$$\Gamma(J/\psi \to \eta_c \gamma) \propto |\langle \eta_c | J^{em} | J/\psi \rangle|_{q^2=0}^2$$

Three point correlation functions

$$C^{(3)}(t) = \langle \sum_{\vec{x}, \vec{y}} e^{-i\vec{p}\vec{x}} O_{\eta_c}(\vec{x}, T) J_{em}(\vec{y}, t) O^{\dagger}_{J/\psi}(\vec{0}, 0) \rangle$$

at intermediate times:

$$0 \ll \underset{\sim}{\underline{t}} \ll T \frac{\mathbf{Z}_{J\psi} \mathbf{Z}_{\eta c} \exp \left[\left(\mathbf{E}_{\eta c} - \mathbf{M}_{J/\psi} \right) \mathbf{t} \right] \left\langle \eta_{c} \left| J_{j}^{em} \right| (J/\psi)_{i} \right\rangle}{4 \mathbf{M}_{J/\psi} \mathbf{E}_{\eta c}}$$


Two points correlation functions: used to remove the sources

$$C^{(2)}(t) = \sum_{\vec{x}} \langle O_{\eta_c}(\vec{x},t) O_{\eta_c}^{\dagger}(\vec{0},0) \rangle$$

at large times:

 $\overset{t\to\infty}{\simeq} Z_{\eta_c}^2 \exp(-E_{\eta_c}t)/2E_{\eta_c}$

and similarly for J/ψ .

Two points correlation function computation

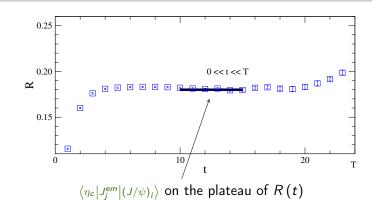
Compute full quark propagator

Solve discrete Dirac equation on gauge background: $D(y,x) \cdot S(x,0) = \delta_{y,0}$

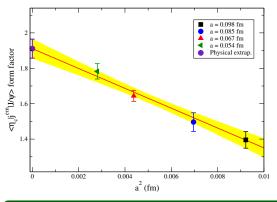
- ullet Discretized Dirac operator D embeds all non perturbative QCD dynamics
- ullet So S is the fully non perturbative propagator

Combine 2 propagators with suitable Dirac structures

In practice


- D operator and the propagator S are large matrices ($\mathcal{O}(10^9)$ lines)
- Solving Dirac equation requires large amount of CPU resources

Matrix element $\langle \eta_c | J_i^{em} | (J/\psi)_i \rangle$ (example)


Combine with $C^{(3)}$ with Z and M determined from $C^{(2)}$

$$R(t) \equiv \frac{4M_{J/\psi} E_{\eta c} C_{ij}^{(3)}(t)}{Z_{J\psi} Z_{\eta c} \exp\left[\left(E_{\eta c} - M_{J/\psi}\right)t\right]} \stackrel{0 \ll t \ll T}{\simeq} \left\langle \eta_c \left| J_j^{em} \left| (J/\psi)_i \right\rangle \right.$$

NB: very accurate determination of $\Delta M = M_{J/\psi} - M_{\eta_c} = 112(3)$ MeV

Continuum limit extrapolation

- Significant dependance on cut-off scale a
- No dependance on light (sea) quark mass

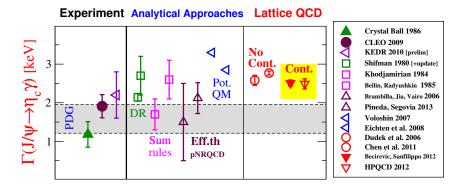
Our final result

- Putting everything together we get: $\Gamma(J/\psi \to \eta_c \gamma) = 2.58 \, (13) \, \mathrm{keV}$
- Our value is clearly:
 - larger than Crystal Ball('86) 1.18(33) keV
 - compatible with CLEO('09) 1.91(30) keV, and KEDR('10) 2.17(40) keV

Recent developments

New lattice study

- HPQCD collabation (PRD86 (2012) 094501) soon after reported results:
 - using a totally different regularization ('HISQ')
 - including also dynamical strange quark (i.e. \$\overline{s}s\$ pairs creation)
- They show that $\langle \eta_{\epsilon} | J_{j}^{em} | (J/\psi)_{i} \rangle$ does not depend on m_{s}^{sea}
- Excellent agreement with our result in the continuum limit:


$$\Gamma_{J/\psi \to \eta_e \gamma} = 2.49 (19) \text{ keV}$$

Improved pNRQCD determination

- Pineda & Segovia (PRD87, 2013) improved description of M1-decays
 - exact inclusion of the static potential in the low energy hamiltonian
 - resummation of large logs by means of RGE
- Cancellation of renormalon ambiguity → smaller uncertainty

$$\Gamma_{J/\psi \to \eta_e \gamma} = 2.14(40) \,\mathrm{keV}$$

Is the $J/\psi \to \eta_c \gamma$ puzzle solved?

- Two different lattice approaches give the same results in the continuum
- On the theory side the problem is solved
- This becomes a precision test of QCD
- The experimental situation needs to be clarified

,

 $h_c \to \eta_c \gamma$

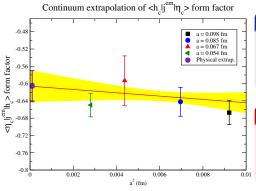
radiative decays

Facts about h_c meson

h_c : charmonium $J^{PC}=1^{+-}$ state

- Elusive for many years
- Finally observed at CLEO (2005)
- BaBar confirmed (2008): $B \to X_{\bar{c}c}K^{(*)}$, through dominant $X_{\bar{c}c} \to \eta_c \gamma$
- BESIII (2010) observed $\psi' \to h_c (\to \eta_c \gamma) \pi^0$

PDG


- $m_{h_c} = 3525.4(1) \,\mathrm{MeV}$
- $\Gamma(h_c) = 0.7(4) \,\mathrm{MeV}$
- $\mathcal{B}(h_c \to \eta_c \gamma) = 51(6)\%$

$$\Gamma(h_c \to \eta_c \gamma) = 0.36(21) \,\mathrm{MeV}$$

• At our study times, $\Gamma(h_c \to \eta_c \gamma)$ was still experimentally unknown!

$h_c \to \eta_c \gamma$ radiative decay

Result for the mass

$$m_{h_e}^{THIS} = 3542(32)\,\mathrm{MeV} \ m_{h_e}^{PDG} = 3525.4(1)\,\mathrm{MeV} \ \sqrt{\mathrm{agrees\ very\ well}}$$

Partial width

$$\Gamma(h_c \to \eta_c \gamma)^{THIS} = 0.72(5)(2) \, \mathrm{MeV}$$

 $\Gamma(h_c \to \eta_c \gamma)^{PDG} = 0.36(21) \, \mathrm{MeV}$
X quite in disagreement

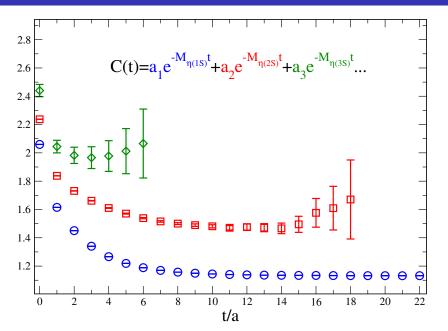
- We need further experimental studies to assess the discrepancy
- Would be great if other theoretical study were studied as well
 - use other lattice discretization
 - improve pNRQCD for E1-transitions
 - try also QCD sum rule

Radiative decays

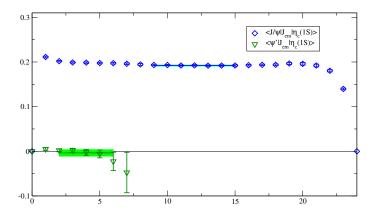
excited charmonium

Decays of radially excited charmomium (preliminary)

Radiative decays of an excited states to the ground state

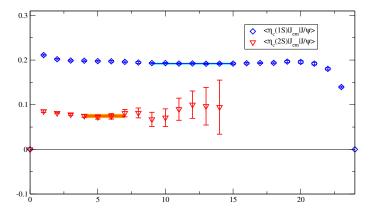

- Easier to measure for experimentalists
 - more energetic photons easier to recognize
 - more phase space w.r.t ground state decays
- Harder for theorists:
 - models and effective theories predictions are unreliable (very sensitive to high order relativistic correction)
 - \bullet lattice: reliable separation of excitation and ground state is difficult

Spectral decomposition of two points correlation function


$$C_{2pt}(t) = a_1 e^{-M_1 t} + a_2 e^{-M_2 t} + a_3 e^{-M_3 t} + ...$$

- How to separate different states?
 - ightarrow we use several operators with the same quantum numbers
- Smeared operators: operators with different spatial distribution
 → different couplings to states

Spectral decomposition of 2pts pseudoscalar corr. function


$$\psi' \to \eta_c (1S) \gamma$$

Form factor for $\psi' \to \eta_c \gamma$ very small: negligible decay width

- Compatible with findings of J.J Dudek et al, PRD 79 ('09)
- In line with experiments, that finds very small $\Gamma\left(\psi'\to\eta_c\gamma\right)$

$\eta_c(2S) \to J/\psi \gamma$

Form factor for $\eta_c(2S) \to J/\psi \gamma$ sizable: non negligible decay width

- Never explored in lattice before, never measured in experiments
- Caveat: no continuum limit

Conclusions

Results

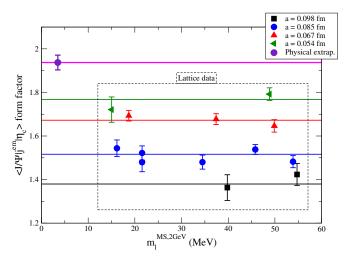
First full determination of $J/\psi \to \eta_c \gamma$, $h_c \to \eta_c \gamma$ form factors:

- high statistics unquenched simulations
- continuum extrapolation under control
- non-perturbatively renormalized

Preliminary study of excited-to-ground state decays

Main message from Lattice QCD side

- Finally assessed theoretical estimate of $\Gamma(J/\psi \to \eta_c \gamma)$
- Found a (small) **discrepancy** for $\Gamma(h_c \to \eta_c \gamma)$
- Indication of sizable $\Gamma(\eta_c(2S) \to J/\psi\gamma)$


Main message for experimentalists

Radiative decays of charmonium could become a precision test of QCD but

- Indispensable to clarify $\Gamma(J/\psi \to \eta_c \gamma)$
- Improve the measurement of Γ_{h_c}
- Measure $\Gamma(\eta_c(2S) \to J/\psi\gamma)$

Backup slides

Dependence on light quark mass

Insensitive to variation of the light sea quark mass $m_\ell^{\rm sea}$ (expected because $m_c^{\rm val}\gg m_\ell^{\rm sea}$)

Expected insensitivity to the dynamical strange quark $(m_c\gg m_s\gg m_\ell^{sea})$

Can we do charm physics on current lattices?

Some back of the envelop calculation

- Lattice spacings: $a \sim 0.050 \div 0.100$ fm, $1/a \sim 2 \div 4$ GeV
- Charmed meson mass: $M_{D^{\pm}}=1.87$ GeV, $M_{J/\Psi}=3.1$ GeV

To study charm physics on such lattices seem questionable but...

Some deeper calculation

- In the free theory the cut off is given by $p_{max} = \pi/a \sim 6 \div 12$ GeV!
- Seems to be almost good also to study b quark...

Cutoff of interacting theory is unknown: only actual computations can teach us

How to keep the situation under control?

Having 4 different lattice spacing, and $\mathcal{O}(a)$ improved theory allows:

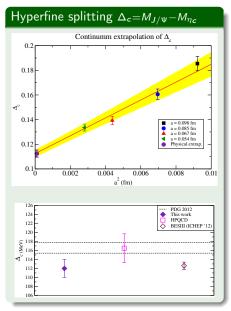
- ullet to drop coarsest lattice spacing and check for stability of a o 0 limit
- to assess the convergence $\propto a^2$ to the continuum limit: $\Phi^{latt} = \Phi^{cont.} + \Phi' a^2$

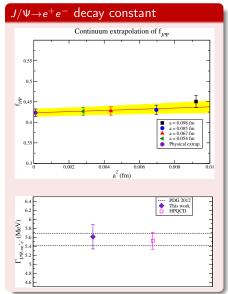

Determination of the charm quark mass

Wick contraction

$$C(\tau) = \sum_{\vec{x}} \left\langle O^{\dagger}(\vec{x}, \tau) O(\vec{0}, 0) \right\rangle \underset{Wick}{=} \operatorname{Tr} \left[\Gamma S_{l}(\vec{x}, \tau; \vec{0}, 0) \Gamma S_{c}(\vec{0}, 0; \vec{x}, \tau) \right]$$

Quark propagator calculation


Solving Dirac equation on gauge background provides full quark propagator $D_q(y,x)\cdot S_q(x,0)=\delta_{V,0}$ $D_q=\left(\frac{1}{2\kappa}+K[U]\right)\mathbf{1}+im_q\gamma_5\tau_3$



In practice

- ullet D operator and the propagator S are large matrices ($\mathcal{O}\left(10^9\right)$ lines)
- Solving Dirac equation requires large amount of CPU resources

Other two precise tests of SM

