# EXOTIC HEAVY HADRONS (EXPERIMENTAL RESULTS)

# Marco Pappagallo



UK Flavour 2013, Durham, United Kingdom 5 September 2013

# WHAT IS EXOTIC?

- In the constituent quark model hadrons are classified:
- Mesons: quark-antiquark
- Baryons: 3 quarks

Many models predict an existence of hadrons of more complex structure with  $N_{quarks} \neq 2,3$ :

- > Tetraquark: tightly bound diquark & anti-diquark
- Molecule: loosely bound meson-antimeson "molecule"
- Pentaquarks: 5 quarks
- ➤ H di-Baryon: Tightly bound of 6 quark state
- Glueball: Color-singlet multi-gluon bound state
- Hybrids: qqg hybrid mesons

# Exotics are named X, Y, Z, G, ....currently all are X in PDG

# INTRODUCTION

- All charmonium states below the  $D\bar{D}$  threshold have been observed
- \* Charmonium states above the  $D\bar{D}$ or  $D\bar{D}^*$  threshold can decay into  $D\bar{D}$  and  $D\bar{D}^*$  final states
- Many predicted states still not observed
- Everything seemed understood and well established up to 2003...



# X(3872)

The X(3872) exotic-meson was discovered in 2003 by the Belle collaboration in the  $B \to KX(3872)$  with  $X(3872) \to J/\psi \pi^+\pi^-$ 

- $\circledast$  Promptly confirmed by BaBar, CDF, D0
- \* Observed also in  $J/\psi\omega, \gamma J/\psi, \gamma \psi(2S), D^0 \bar{D}^{*0}$
- $\circledast$  Quantum number constrained to 1<sup>++</sup> or 2<sup>-+</sup> by CDF
- $\circledast$  Width is surprisely narrow (< 1.2 MeV)
- $\circledast$  Mass is not near to any of the predicted  $c\bar{c}$  states
- \* Mass is roughly equal to  $m(D^0) + m(D^{*0})$
- $\circledast$  High production rate in  $p\bar{p}$  collisions

After 10 years the nature of X(3872) remains uncertain:

- \* Conventional  $c\bar{c}$  state?  $\chi_{c1}(2^3P_1) (J^{PC} = 1^{++})?\eta_{c2}(1^1D_2) (J^{PC} = 2^{-+})?$
- \*  $D^{*0}\overline{D}^0$  bound state or tetraquark state  $(J^{PC} = 1^{++})$ ?





# UK Flavour 2013

# X(3872) QUANTUM NUMBERS

- \* Observation of the  $X(3872) > J/\psi\gamma$  decay  $\Rightarrow$  C=+. BaBar [PRL 102 132001] and Belle[PRL 107 091803]
- \* CDF:  $2292 \pm 113 \ p\bar{p} \rightarrow X(3872) + anything$  events. Unknown X(3872) polarization (only 3 angles).Quantum numbers constrained to 1<sup>++</sup> or 2<sup>-+</sup>. [PRL 98, 132002 (2007)]
- \* Belle:  $173 \pm 16 \ B \rightarrow KX(3872)$  events. 1D analysis carried out (Not enough events to bin in 5D). 1<sup>++</sup> or 2<sup>-+</sup> could not be distinguished. [hep-ex/0505038]
- \* LHCb:  $313 \pm 26 \ B^+ \rightarrow K^+ X(3872)$ , 5D analysis: all angular correlations used to measure X(3872)  $J^{PC}$  [PRL 110, 222001 (2013)]





## **UK Flavour 2013**

# X(3872) QUANTUM NUMBERS

- \* Likelihood-ratio test to discriminate between the  $1^{++}$  and the  $2^{-+}$  assignments
- \* Simulated experiments, each with the number of signals and background events as in the real experiment
- $\circledast$  The two spin hypotheses are completely separated
  - \* t > 0 implies 1<sup>++</sup> favoured
  - \* t < 0 implies 2<sup>-+</sup> favoured

\* Data favour the 1<sup>++</sup> over the 2<sup>-+</sup> hypothesis at  $8.4\sigma$ 



 $\circledast$  Conventional charmonium interpretation of the X(3872) is fading

❀ Exotic interpretation is favoured!

## UK Flavour 2013

# X(3872) AND D<sup>0</sup> MASS MEASUREMENTS

If X(3872) is a  $\overline{D}^0 D^{*0}$  bound state  $\Rightarrow m(X(3872)) < m(D^0) + m(D^{*0})$ 



# **BINDING ENERGY**



$$E_B = m(D^0 D^{*0}) - m(X(3872))$$
  
=  $2m(D^0) + \Delta m(D^{*0} - D^0) - m(X(3872))$   
=  $0.09 \pm 0.28 \,\mathrm{MeV/c^2}$ 

The result reinforces the conclusion that if the X(3872) state is a molecule, it is extremely loosely bound

**UK Flavour 2013** 

# X(3872) PRODUCTION

- X(3872) production in hadron collisions reported by CDF [PRL93, 072001 (2004)], D0 [PRL93, 162002 (2004)], LHCb [EPJC72, 1972 (2012)] and CMS [JHEP 1304, 154 (2013)].
- \* X(3872) reconstructed in the  $J/\psi \pi^+\pi^-$  decay mode, in the central region (CMS, |y| < 1.2) or in the forward region (LHCb, 2.5 < y < 4.5)



### **UK Flavour 2013**

# **X(3872) DECAY**

\* CMS:  $\pi^+\pi^-$  spectrum in  $X(3872) \rightarrow J/\psi\pi^+\pi^-$  decays consistent with  $\rho^0$  [JHEP 1304, 154 (2013)]

\* LHCb: search for  $X(3872) \rightarrow p\bar{p}$  decays in  $B^+ \rightarrow K^+ p\bar{p}$  [EPJC73, 2642 (2013)]



 $\frac{BR(X(3872) \to p\bar{p})}{BR(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3}$ 

UK Flavour 2013

# THE EXOTIC PARTICLE ZOO

- The X(3872) has been the first unexpected quarkonia candidate
   Many other states observed in the
- years after
- > Most of them need to be confirmed
- Large uncertainties on masses and widths
- > The list is getting longer:  $Z_b^+$ ,  $Z_c^+$



| State                | <i>m</i> (MeV)                     | Γ (MeV)                | JPC        | Process (mode)                                      | Experiment (# $\sigma$ )                | Year | Status |
|----------------------|------------------------------------|------------------------|------------|-----------------------------------------------------|-----------------------------------------|------|--------|
| X(3872)              | $3871.52 \pm 0.20$                 | $1.3\pm0.6$            | 1++        | $B\to K(\pi^+\pi^-J/\psi)$                          | Belle [85, 86] (12.8), BABAR [87] (8.6) | 2003 | ОК     |
|                      |                                    | (<2.2)                 |            | $p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \cdots$ | CDF [88–90] (np), DØ [91] (5.2)         |      |        |
|                      |                                    |                        |            | $B \to K(\omega J/\psi)$                            | Belle [92] (4.3), BABAR [93] (4.0)      |      |        |
|                      |                                    |                        |            | $B \to K(D^{*0}\bar{D^0})$                          | Belle [94, 95] (6.4), BABAR [96] (4.9)  |      |        |
|                      | •                                  |                        |            | $B \to K(\gamma J/\psi)$                            | Belle [92] (4.0), BABAR [97, 98] (3.6)  |      |        |
| $\chi_{c0}(2P)$      | )                                  |                        |            | $B \to K(\gamma \psi(2S))$                          | BABAR [98] (3.5), Belle [99] (0.4)      |      |        |
| X (3915)             | $3915.6\pm3.1$                     | $28\pm10$              | $0/2^{?+}$ | $B \to K(\omega J/\psi)$                            | Belle [100] (8.1), BABAR [101] (19)     | 2004 | OK     |
|                      |                                    |                        |            | $e^+e^- \to e^+e^-(\omega J/\psi)$                  | Belle [102] (7.7)                       |      |        |
| X(3940)              | $3942^{+9}_{-8}$                   | $37^{+27}_{-17}$       | ??+        | $e^+e^-\to J/\psi(D\bar{D}^*)$                      | Belle [103] (6.0)                       | 2007 | NC!    |
|                      |                                    |                        |            | $e^+e^- \rightarrow J/\psi\;(\ldots)$               | Belle [54] (5.0)                        |      |        |
| G(3900)              | $3943\pm21$                        | $52\pm11$              | 1          | $e^+e^- \to \gamma(D\bar{D})$                       | BABAR [27] (np), Belle [21] (np)        | 2007 | OK     |
| Y(4008)              | $4008^{+121}_{-49}$                | $226\pm97$             | 1          | $e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$              | Belle [104] (7.4)                       | 2007 | NC!    |
| $Z_1(4050)^+$        | $4051_{-43}^{+24}$                 | $82^{+51}_{-55}$       | ?          | $B \to K(\pi^+ \chi_{c1}(1P))$                      | Belle [105] (5.0)                       | 2008 | NC!    |
| Y(4140)              | $4143.4\pm3.0$                     | $15^{+11}_{-7}$        | ??+        | $B \to K(\phi J/\psi)$                              | CDF [106, 107] (5.0)                    | 2009 | NC!    |
| X(4160)              | 4156 <sup>+29</sup> <sub>-25</sub> | $139^{+113}_{-65}$     | ??+        | $e^+e^-\to J/\psi(D\bar{D}^*)$                      | Belle [103] (5.5)                       | 2007 | NC!    |
| $Z_2(4250)^+$        | $4248^{+185}_{-45}$                | $177^{+321}_{-72}$     | ?          | $B\to K(\pi^+\chi_{c1}(1P))$                        | Belle [105] (5.0)                       | 2008 | NC!    |
| Y(4260)              | $4263\pm 5$                        | $108\pm14$             | 1          | $e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$              | BABAR [108, 109] (8.0)                  | 2005 | OK     |
|                      |                                    |                        |            |                                                     | CLEO [110] (5.4)                        |      |        |
|                      |                                    |                        |            |                                                     | Belle [104] (15)                        |      |        |
|                      |                                    |                        |            | $e^+e^- \to (\pi^+\pi^-J/\psi)$                     | CLEO [111] (11)                         |      |        |
|                      |                                    |                        |            | $e^+e^- \to (\pi^0\pi^0 J/\psi)$                    | CLEO [111] (5.1)                        |      |        |
| Y(4274)              | $4274.4_{-6.7}^{+8.4}$             | $32^{+22}_{-15}$       | ??+        | $B \to K(\phi J/\psi)$                              | CDF [107] (3.1)                         | 2010 | NC!    |
| X(4350)              | $4350.6^{+4.6}_{-5.1}$             | $13.3^{+18.4}_{-10.0}$ | 0,2++      | $e^+e^- \to e^+e^-(\phi J/\psi)$                    | Belle [112] (3.2)                       | 2009 | NC!    |
| Y(4360)              | $4353 \pm 11$                      | $96 \pm 42$            | 1          | $e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$             | BABAR [113] (np), Belle [114] (8.0)     | 2007 | OK     |
| Z(4430) <sup>+</sup> | $4443_{-18}^{+24}$                 | $107^{+113}_{-71}$     | ?          | $B\to K(\pi^+\psi(2S))$                             | Belle [115, 116] (6.4)                  | 2007 | NC!    |
| X(4630)              | $4634^{+9}_{-11}$                  | $92^{+41}_{-32}$       | 1          | $e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$         | Belle [25] (8.2)                        | 2007 | NC!    |
| Y(4660)              | $4664 \pm 12$                      | $48\pm15$              | 1          | $e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$             | Belle [114] (5.8)                       | 2007 | NC!    |
| $Y_b(10888)$         | $10888.4\pm3.0$                    | $30.7^{+8.9}_{-7.7}$   | 1          | $e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$               | Belle [37, 117] (3.2)                   | 2010 | NC!    |

### Eur. Phys. J. C71:1534, 2011

## **UK Flavour 2013**



Charmonium states with  $m_X >> D_{(s)}^{(*)}D_{(s)}^{(*)}$  should decay easily into D mesons. The narrow widths hint that their nature is different: meson-meson, hybrid, tetraquark, etc..

**UK Flavour 2013** 

# SEARCH FOR X(4140) AT LHCB



## UK Flavour 2013

# X(4140) RESULTS: COMPARISON

- > CMS has reported observation/ evidence of peaks in  $J\psi \phi$  with a larger sample of  $B^+ \rightarrow J/\psi \phi K^+$
- The width of structure near the threshold (not yet quoted) looks wider
- The mass of the X(4274) is 3.8σ in disagreement with CDF measurement

# X(4140) and X(4274) still to be confirmed

An amplitude analysis would help to show the resonance nature of these peaks



### **UK Flavour 2013**

$$Z_{c}(4430)^{+}$$
Charged structure observed in the  $\psi(2S)\pi^{+}$  in  $B^{0(+)} \rightarrow \psi(2S)\pi^{+}K^{-(0)}$   
decays(6.4 $\sigma$ ) by Belle[PRL 100, 142001 (2008)].  

$$M = 4433 \pm 4(stat) \pm 2(syst)$$
  
 $\Gamma = 45^{+18}_{-13}(stat)^{+30}_{-13}(syst)$ 
Clear signature of exotic:  
Decay to charmonium: contains a  $c\bar{c}$  pair  
Has electric charge: has 2 more light quarks  $N_{quarks} >= 4!$   
Tetraquark,  $D^{*}D_{1}$  molecule?

Later Belle re-analysed their data with a 2D "Dalitz" technique. Integra-\* tion over 2 angles  $\Rightarrow$  2 remaining variable:  $M^2(\psi(2S)\pi^+)$  and  $M^2(K^-\pi^+)$  $\Rightarrow$  No interferences between the different  $\psi(2S)$  helicity states. (6.4 $\sigma$ )[PHYS. REV. D 80, 031104(R) (2009)]

 $M = 4443^{+15}_{-12}(stat)^{19}_{-13}(syst)$  $\Gamma = 107^{+86}_{-43}(stat)^{+74}_{-56}(syst)$ 



# $Z_{c}(4430)^{+}$

- \* Dalitz plot is dominated by mass and angular distribution structures in the  $K\pi$  system
- \* Investigation the extent to which reflection of the  $K\pi$  mass and angular structures are able to reproduce the  $\psi(2S)\pi$  mass distributions
- \* Representation the  $K\pi$  angular distribution in terms of a Legendre polynomial expansion (S, P and D waves) [PRD 79, 112001 (2009)]
- $\circledast\,$  Belle and BABAR mass distributions are statistically consistent.
- $\circledast Z(4430)^+$  not confirmed (nor excluded)



**UK Flavour 2013** 

Z<sub>c</sub>(4430)<sup>+</sup>

- $\circledast$  Recently Belle presented results of a full 4D amplitude analysis[arXiv:1306.4894]
- \* The preferred assignment of the quantum numbers of the  $Z(4430)^+$  is  $1^+$



 $\circledast~{\rm The}~0^-$  hypothesis is not excluded

### UK Flavour 2013

# $Z_{c}(3900)^{+}$

 $\circledast e^+e^- \rightarrow \pi^+\pi^- J/\psi$  at 4.26 GeV (peak of the Y(4260)) cross section) [PRL 110, 252001 (2013)]

Structures observed in the  $\pi^+\pi^-$  and  $\pi J/\psi$  mass spectra \*

Reflections of the  $\pi\pi$  mass spectrum, that includes the \*  $f_0(500), f_0(980)$  and non-resonant S-wave, can't cope peaking structures in  $\pi J/\psi$ 

100

60

40

20

Events / 0.02 GeV/c<sup>2</sup>

The reflection of the  $Z_c(3900)^+$  itself is observed! \*

+ Data

MC

Z, (3900) MC

Sideband



### **UK Flavour 2013**

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

 $M(\pi^+J/\psi)$  (GeV/c<sup>2</sup>)

100

80

60

Events / 0.02 GeV/c<sup>2</sup>

#### M. Pappagallo

 $M(\pi^{-}J/\psi)$  (GeV/c<sup>2</sup>)

+ Data

MC

# $Z_{c}(3900)^{+}$



S-wave Breit-Wigner with efficiency correction
 Mass = (3899.0±3.6±4.9) MeV
 Width = (46±10±20) MeV
 Fraction = (21.5±3.3±7.5)%

# $Z_c(3900)^+$ : CONFIRMATION

# Belle with ISR in Y(4260) decays: [PRL110, 252002 (2013)]



M = 3894.5±6.6±4.5 MeV
 Γ = 63±24±26 MeV
 159 ± 49 events
 >5.2σ

# CLEOc data at 4.17 GeV: [arxiv:1304.3036]



# UK Flavour 2013

# $Z_{c}(4025)^{+}$

 $* e^+e^- \rightarrow (D^*\bar{D}^*)^+\pi^-$  at 4.26 GeV (peak of the Y(4260) cross section)[arXiv:1308.2760]

- \* Partial reconstruction technique is used. The  $e^+e^- \to (D^*\bar{D}^*)^+\pi^-$  signal identified in the recoil  $D^+\pi^-$  mass spectrum  $(RM(X) = |p_{e^+e^-} p_X|)$
- $\circledast\,$  Structure observed in the  $\pi^-$  recoil mass spectrum
- \*  $\sqrt{s} = 4.26 \,\text{GeV} \ll \text{the production thresholds } D^{**}\bar{D}^*$



BESIII has presented the observation of a  $Z_c(4020)^+ \rightarrow h_c \pi^+$  (Changzheng Yuan at Lepton-Photon 2013) Is it the same state? More studies are needed

UK Flavour 2013

# $Z_{B}(10610)^{+}$ AND $Z_{B}(10650)^{+}$



**UK Flavour 2013** 

M. Pappagallo

# $Z_{B}(10610)^{+}$ AND $Z_{B}(10650)^{+}$

|                             |                                                      |        | 120 E                                                                             |                                                                               |     |
|-----------------------------|------------------------------------------------------|--------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|
| $* Z_b$ 's ob               | oserved also in [arXiv:1209.6450]:                   | ev/c²  | 100 (c)<br>80                                                                     |                                                                               | 2   |
| Υ                           | $(5S) \to (B^* \bar{B}^*)^+ \pi^-$                   | cs/5 M | 60 -                                                                              |                                                                               |     |
| $\circledast B^*\bar{B}$ as | nd $B^*\bar{B}^*$ are the dominant decay modes       | Neven  | 40<br>20                                                                          |                                                                               |     |
|                             |                                                      | ;      | 0<br>5 5.1<br>EM(BT)                                                              | 5.2 5.3 5.4<br>+M(B)-May GeV/c <sup>2</sup>                                   | 5.5 |
|                             |                                                      |        |                                                                                   |                                                                               |     |
|                             |                                                      |        |                                                                                   |                                                                               |     |
| =                           | Channel                                              |        | Fraction                                                                          | n, %                                                                          |     |
| C                           | Channel                                              |        | Fraction $Z_b(10610)$                                                             | n, % $Z_b(10650)$                                                             |     |
| T<br>T                      | Channel $(1S)\pi^+$                                  |        | Fraction $Z_b(10610)$<br>$0.32 \pm 0.09$                                          | n, %<br>$Z_b(10650)$<br>$0.24 \pm 0.07$                                       |     |
| T<br>T                      | Channel<br>$T(1S)\pi^+$<br>$T(2S)\pi^+$              |        | Fraction<br>$Z_b(10610)$<br>$0.32 \pm 0.09$<br>$4.38 \pm 1.21$                    | n, %<br>$Z_b(10650)$<br>$0.24 \pm 0.07$<br>$2.40 \pm 0.63$                    |     |
| r<br>r<br>r                 | Channel<br>$(1S)\pi^+$<br>$(2S)\pi^+$<br>$(3S)\pi^+$ |        | Fraction<br>$Z_b(10610)$<br>$0.32 \pm 0.09$<br>$4.38 \pm 1.21$<br>$2.15 \pm 0.56$ | n, %<br>$Z_b(10650)$<br>$0.24 \pm 0.07$<br>$2.40 \pm 0.63$<br>$1.64 \pm 0.40$ |     |

| $h_b(1P)\pi^+$                        | $2.81 \pm 1.10$ | $7.43 \pm 2.70$ |
|---------------------------------------|-----------------|-----------------|
| $h_b(2P)\pi^+$                        | $4.34\pm2.07$   | $14.8\pm6.22$   |
| $B^+ \bar{B}^{*0} + \bar{B}^0 B^{*+}$ | $86.0\pm3.6$    | _               |
| $B^{*+}\bar{B}^{*0}$                  | —               | $73.4\pm7.0$    |

# $Z_{B}(10610)^{0}$

\* Evidence of the neutral partner  $Z_b(10610)^0$  in Dalitz plot analysis [arXiv:1207.4345]:  $\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^0\pi^0$ 

\* No evidence of  $Z_b(10650)^0$  (Consistent with the available statistics)



UK Flavour 2013

# CONCLUSIONS

 Experimental analysis of quarkonia states is a very active field of particle physics.

- The existence of most of the exotic states has to be proven/confirmed but relevant progress have been made recently:
  - ✓ The quantum number  $J^{PC}=1^{++}$  for the X(3872) favors an exotic interpretation.
  - ✓ First confirmation of a charged  $Z_c(3900)^+$
- Many results based on a subset of the available data samples. Huge potential for improving precision and sheding light on the nature of some exotics