(Exotic) heavy hadrons on the lattice

Christopher Thomas, Trinity College Dublin

thomasc@maths.tcd.ie

UK Flavour 2013, Durham, 5th Sept 2013

Hadron Spectrum Collaboration

Introduction

- Excited charmonium, D and D_s spectra
- Exotic meson photocoupling (briefly)
- Excited charmed baryons (briefly)
- Outlook

Probe non-perturbative regime of QCD

Relevant degrees of freedom?

Probe non-perturbative regime of QCD

Relevant degrees of freedom?

Probe non-perturbative regime of QCD

Relevant degrees of freedom?

Exotic J^{PC} (**0**⁻⁻, **0**⁺⁻, **1**⁻⁺, **2**⁺⁻, ...) or flavour quantum numbers – can't just be a $q\bar{q}$ pair

X(3872), Y(4260), Z⁺(4430), Z⁺(3900), ... ? Also: $D_s(2317)$, light scalars, ... Exotic 1⁻⁺ ?

Path integral formulation

$$\int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}Uf(\psi,ar{\psi},U)e^{- ilde{S}[\psi,ar{\psi},U]}$$

Euclidean time: $t \rightarrow i t$

Numerical methods (Monte Carlo)

- Finite *a* and *L*
- (and reduced sym.)
- Unphysical m_{π}

QCD on a lattice

Discretise (spacing = a) – regulator Finite volume \rightarrow finite no. of d.o.f.

Excited spectroscopy on the lattice

Energy eigenstates of Hamiltonian from 2-pt corrs.

$$C_{ij}(t) = <0|\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0>$$

Excited spectroscopy on the lattice

(our approach)

Energy eigenstates of Hamiltonian from 2-pt corrs.

$$C_{ij}(t) = < 0 \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) 0 >$$

Interpolating operators

$$O(t) = \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \ \bar{\psi}(x) \left[\Gamma \overleftrightarrow{D} \overleftrightarrow{D} \dots \right] \psi(x)$$

Definite $J^{P(C)}$ (**p** = **0**)

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0 |\mathcal{O}_i(0)|_n > < n |\mathcal{O}_j^{\dagger}(0)|_0 >$$

Excited spectroscopy on the lattice

(our approach)

Energy eigenstates of Hamiltonian from 2-pt corrs.

$$C_{ij}(t) = < 0 \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) 0 >$$

Interpolating operators

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[\Gamma \overleftrightarrow{D} \overleftrightarrow{D} \dots \right] \psi(x)$$

Definite $J^{P(C)}$ (**p** = **0**)

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0|\mathcal{O}_i(0)|n > < n|\mathcal{O}_j^{\dagger}(0)|0 >$$

Large basis of ops \rightarrow matrix of corrs.

Generalised eigenvalue problem

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)} \qquad Z_i^{(n)} \equiv <0|\mathcal{O}_i|n>$$
$$\lambda^{(n)}(t) \to e^{-E_n(t-t_0)} \quad \text{Eigenvectors} \Rightarrow Z^{(n)} \quad (t \gg t_0)$$

Lattice setup

Dynamical (unquenched) *u*, *d* and *s* quarks [N_f = 2+1]. Relativistic *c* quark

Anisotropic – finer in temporal direction ($a_s/a_t \approx 3.5$), $a_s \approx 0.12$ fm Two volumes: 16³, **24³** ($L_s \approx 1.9$, 2.9 fm) $M_{\pi} \approx 400$ MeV.

Only connected charm quark contributions

JHEP 07 (2012) 126 – Liuming Liu, Graham Moir, Mike Peardon, Sinéad Ryan, CT, Pol Vilaseca; Jo Dudek, Robert Edwards, Bálint Joó, David Richards

JHEP 05 (2013) 021 – Graham Moir, Mike Peardon, Sinéad Ryan, CT, Liuming Liu

Lattice setup

Dynamical (unquenched) *u*, *d* and *s* quarks [$N_f = 2+1$]. Relativistic *c* quark

Anisotropic – finer in temporal direction ($a_s/a_t \approx 3.5$), $a_s \approx 0.12$ fm Two volumes: 16³, **24³** ($L_s \approx 1.9$, 2.9 fm) $M_{\pi} \approx 400$ MeV.

Only connected charm quark contributions

Large no. of 'single-meson' ops. of different structures Sensitive to gluonic excitations

JHEP 07 (2012) 126 – Liuming Liu, Graham Moir, Mike Peardon, Sinéad Ryan, CT, Pol Vilaseca; Jo Dudek, Robert Edwards, Bálint Joó, David Richards

JHEP 05 (2013) 021 – Graham Moir, Mike Peardon, Sinéad Ryan, CT, Liuming Liu

Charmed (D/D_s) mesons

24³, $M_{\pi} \approx 400 \text{ MeV}$ JHEP 05 (2013) 021

Charmed (D/D_s) mesons

24³, $M_{\pi} \approx 400 \text{ MeV}$

JHEP 05 (2013) 021

Charmed (D/D_s) mesons

24³, $M_{\pi} \approx 400 \text{ MeV}$

JHEP 05 (2013) 021

Charmed (D/D_s) mesons – mixing

Exotic (1⁻⁺) photocoupling

Older quenched calc. PR D79 094504 (2009)

$$C_{ij}(t_f, t, t_i) = <0|O_i(t_f) \ \bar{\psi}(t)\gamma^{\mu}\psi(t) \ O_j(t_i)|0>$$

Exotic (1⁻⁺) photocoupling

Older quenched calc. PR D79 094504 (2009)

$$C_{ij}(t_f, t, t_i) = <0|O_i(t_f) \ \bar{\psi}(t)\gamma^{\mu}\psi(t) \ O_j(t_i)|0>$$

Large for an M_1 transition $\Gamma(J/\psi \rightarrow \eta_c \gamma) \sim 2 \, \, {
m keV}$

Spin-triplet hybrid?

Charmed baryons

Padmanath et al (Had Spec Collab) [arXiv:1307.7022] Excited ccc baryons

Hybrid baryons (non-exotic quantum numbers)

Charmed baryons

Padmanath et al (Had Spec Collab) [arXiv:1307.7022] Excited ccc baryons

Hybrid baryons (non-exotic quantum numbers)

Padmanath et al (Had Spec Collab) PRELIMINARY Excited cc baryons (also excited c baryons)

Some other lattice calculations

Excited spectra using single-hadron operators:

- Bali et al (BMW & QCDSF) preliminary [arXiv:1108.6147, 1212.0565] (charmonium, charm mesons and baryons)
- Meinel [PR D85, 114510 (2012)] (bbb baryons)

A first go at including multi-hadron operators in the charm sector:

- X(3872), Z⁺(3900) Prelovsek & Leskovec [arXiv:1307.5172, 1308.2097]
- D_s (0⁺) Mohler et al [arXiv:1308.3175]
- D (0⁺, 1⁺) Mohler, Prelovsek, Woloshyn [PR D87, 034501 (2013)]

Summary and outlook

Summary

- Significant progress in studying excited spectra – exotics, gluonic excitations, degrees of freedom
- Charmonium, charmed, light (I=0,1) mesons, baryons
- Lots of experimental interest

Summary and outlook

Summary

- Significant progress in studying excited spectra – exotics, gluonic excitations, degrees of freedom
- Charmonium, charmed, light (I=0,1) mesons, baryons
- Lots of experimental interest

Outlook

Scattering – resonances, decays, …

[PR D83 071504, D86 034031, D87 034505]

- Transitions
- Lighter pion masses, larger volumes, ..., glueballs
- Can understand puzzles in the near future?

Imaginary time – can't study dynamics (e.g. scattering) directly

Imaginary time – can't study dynamics (e.g. scattering) directly

Infinite volume

Continuous spectrum

Infinite volume

Continuous spectrum

Quantised momenta \rightarrow discrete spectrum

Understanding unstable mesons – need energies of multi-hadron states

Lüscher: (elastic) energy shifts in **finite vol**. → **infinite vol**. scattering phase shift

 $\Delta E(L_s) \rightarrow \delta(E,L_s)$

Understanding unstable mesons – need energies of multi-hadron states

Lüscher: (elastic) energy shifts in **finite vol.** → **infinite vol.** scattering phase shift

e.g.
$$\pi\pi \to \rho \to \pi\pi$$

$$\sigma_l(E) \propto \sin^2 \delta_l(E) = \frac{(\Gamma/2)^2}{(E - E_R)^2 + (\Gamma/2)^2}$$

Extract phase shift at discrete $E_{\rm cm}$

Map out phase shift \rightarrow resonance parameters etc

Earlier work on $\pi\pi$ scattering with isospin = 2 (non-resonant): PR D83, 071504 (2011); PR D86, 034031 (2012)

Mapped out in detail

Mapped out in detail

Mapped out in detail