

Review of Kaon Experiments

Evgueni Goudzovski (University of Birmingham) eg@hep.ph.bham.ac.uk

Outline:

- 1) Introduction to CERN kaon programme
- 2) The golden decay mode: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- 3) Lepton flavour/number violation in K decays
- 4) Rare π^0 decays
- 5) Selected recent results, ongoing analyses
- 6) Summary

UK Flavour 2013 IPPP Durham • 5 September 2013

Kaon physics facilities

A variety of experimental techniques: K decay-in-flight (e.g. CERN), stopped K⁺, ϕ factory

CERN NA48/NA62 experiments

Recent K[±] experiments at CERN

Experiment	ΝΔ48/2	NA62-R	ΝΔ62	
Experiment		MAOZ-NK	NAUZ	
	(K [±])	(K [±])	(K ⁺ ; planned)	
Data taking period	2003–2004	2007–2008	2014–2017	
Beam momentum, GeV/c	60	74	75	
RMS momentum bite, GeV/c	2.2	1.4	0.8	
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%	
Spectrometer P _T kick, MeV/c	120	265	270	
M(K [±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) resolution, MeV/c ²	1.7	1.2	0.8	
K decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	1.2×10 ¹³	
Main trigger	multi-track;	e±	$K_{\pi\nu\nu} +$	
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$			

The new NA62 detector:

Same detector (NA48)

- beam spectrometer and kaon tagger;
- improved mass reconstruction and particle identification;
- hermetic photon veto.

NA48/2 and NA62-R_K detector

2003-2008: charged kaon beams, the NA48 detector

Narrow momentum band K^{\pm} beams: P_K= 60 (74) GeV/c, $\delta P_K/P_K \sim 1\%$ (rms).

- ✤ Maximum K[±] decay rate ~100 kHz;
- ✤ NA48/2: six months in 2003–04;
- ✤ NA62-R_K: four months in 2007.

Principal subdetectors:

- ✤ Magnetic spectrometer (4 DCHs) 4 views/DCH: redundancy ⇒ efficiency; $\delta p/p = 0.48\% + 0.009\% p$ [GeV/c] (in 2007)
- Scintillator hodoscope

Fast trigger, time measurement (150ps).

✤ Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous; $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]; $\sigma_x = \sigma_y = 4.2 \text{mm}/E^{1/2} + 0.6 \text{mm}$ (1.5 mm@10GeV).

NA62 detector

- ★ Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10³ for K⁺→π⁺π⁰, 1.5×10⁴ for K→μ⁺ν.
- ♦ Hermetic photon veto: ~10⁸ suppression of $\pi^0 \rightarrow \gamma \gamma$.
- ✤ Particle ID (RICH+LKr+MUV): ~10⁷ muon suppression.

NA62 timeline

- ✤ 5 years of construction interleaved with a technical run in October 2012
- First run with full detector: October–December 2014
- Physics data taking runs before LHC Long Shutdown 2 (LS2)

NA62 construction & tests

Vacuum tank view in 2012

Cherenkov kaon tagger (CEDAR+KTAG)

The golden decay: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

The challenge: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression:

A ~ $(m_t/m_W)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element related to a measured quantity (K⁺→ $\pi^0 e^+\nu$).
- SM precision surpasses any other FCNC process involving quarks.
- ✤ Measurement of $|V_{td}|$ complementary to those from B–B mixing or B⁰→ργ.
- Optimal probe for non-MFV (Gino Isidori, ESPP open symposium 2012)

SM branching ratios Brod et al., PRD 83 (2011) 034030

Мс	ode	BR _{SM} ×10 ¹¹	
K ⁺ → π^+ ν $\overline{\nu}$ (γ)		7.81±0.75±0.29	
$K_L \rightarrow$	$\pi^0 \nu \overline{\nu}$	2.43±0.39±0.06	
		CKM parametric	
2)	The sensiti alm	oretically clean, ve to new physics, ost unexplored	

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at BNL E747/E949

Technique: K⁺ decay at rest

Data taking: E787 (1995–98), E949 (2002). Separated K⁺ beam (710 MeV/c, 1.6MHz). PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain). Hermetic photon veto system.

Observed candidates: 7 Expected background: 2.6 Final result: BR

Significant background in Region 2 from the $K_{2\pi}$ decay with π^+ scattering in the target.

PRL 101 (2008) 191802; PRD 79 (2009) 092004 **10**

Experiment vs theory

NA62 aim: collect O(100) SM $K^+ \rightarrow \pi^+ v \bar{v}$ decays with <20% background in 2 years of data taking using a novel decay-in-flight technique.

<u>Decay signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15–35 GeV/c). <u>Advantages</u>: max detected K⁺ decays/proton ($p_K/p_0 \approx 0.2$); efficient photon veto (>40 GeV missing energy); good π^+ vs μ^+ identification with RICH.

Un-separated beam (6% kaons) \rightarrow higher rates, additional backgrounds.

NA62: $K_{\pi\nu\nu}$ signal region

92% of total BR(K⁺):

- ✤ Outside the signal kinematic region.
- ★ Signal region is split into Region I and Region II by the $K^+ \rightarrow \pi^+ \pi^0$ peak

E. Goudzovski / UK Flavour / Durham, 5 September 2013

8% of total BR(K⁺) including multi-body:

 Span across the signal region (not rejected by kinematic criteria).
 Rejection relies on vetoes, PID. 12

$K_{\pi\nu\nu}$ measurements worldwide

ORKA @ FNAL Main Injector (K⁺):

- ✤ Builds on BNL stopped-kaon technique. ✤ Builds on KEK E391a technique.
- Expect ~100 times higher sensitivity.
- ♦ Goal: O(1000) SM K⁺→ π^+ νν events.
- ✤ Fits inside the CDF solenoid.
- ✤ Re-use CDF infrastructure.

<u>KOTO @ J-PARC</u> (K_L):

- ✤ E391a: BR<6.8×10⁻⁸ @ 90%CL.
- ✤ Expect ~10³ times higher sensitivity.
- ♦ Goal: ~3 SM $K_L \rightarrow \pi^0 \nu \nu$ events.
- ✤ Data taking: 2013–2017.
- ✤ Possible step 2: ~100 SM events.

Lepton Flavour and Lepton Number Violation

LFV in K decays

Kaons: historically competitive in searches for LFV phenomena

- Copious production: high statistics.
- Simple decay topologies: clean experimental signatures.
- ★ Source of tagged π^0 via K⁺→ $\pi^+\pi^0$, K_L→3 π^0 , ... : best limits for LFV π^0 decays.

High NP mass scales accessible for tree-level contributions

Example: $K_L \rightarrow \mu^+ e^-$

Dimensional argument: $\frac{\Gamma_X}{\Gamma_{SM}} \sim \left(\frac{g_X}{g_W} \cdot \frac{M_W}{M_X}\right)^4$ For $g_X \approx g_W$ and $\mathcal{B} \sim 10^{-12}$, $M_X \sim 100 \text{ TeV}$

LFV in K[±] and π^0 decays

Mode	UL at 90% CL	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$		
$K^+ ightarrow \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	$-$ BNL E865 *	PRL 85 (2000) 2877
$K^+ \rightarrow \pi^- e^+ e^+$	$6.4 imes10^{-10}$		P. 120
$(K^{\pm}) \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$	$1.1 imes10^{-9}$ (CERN NA48/2	PLB 697 (2011) 107
$K^+ \rightarrow \mu^- \nu e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ ightarrow e^- u \mu^+ \mu^+$	no data		
$\pi^0 ightarrow \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these 3 modes are similar to those of BNL E865

Expected NA62 single event sensitivities: $\sim 10^{-12}$ for K[±] decays, $\sim 10^{-11}$ for π^0 decays.

✤ NA62 is capable of improving on all these decay modes;

♦ 2014 run alone: competitive for some modes (e.g. $K^+ \rightarrow \pi^- \mu^+ \mu^+$).

NA62: di-lepton trigger

NA62 three-track decay rate upstream HOD: $F_{3track} = 640 \text{ kHz}$ \rightarrow Too high to collect all three-track decays (NA48/2 approach)

Available L0 trigger primitives:

- \mathbf{O}_{N} : at least N hodoscope quadrants; $LKR_{N}(x)$: at least N LKr clusters with energy E > x GeV;
- \bigstar MUV_N: hits in at least N MUV3 pads; ✤ RICH hit multiplicity.

Possible L0 triggers for LFV searches:

ee pair: $\mu e pair:$ μμ pair: $Q_2 \times LKR_2(15)$ $Q_2 \times LKR_1(15) \times MUV_1$ $Q_2 \times MUV_2$

Total lepton pair L0 rate (dominated by $K^+ \rightarrow \pi^+ \pi^-$): F = few × 10 kHz \rightarrow Charge-blind lepton pair collection is feasible

Dark photon: experimental status

M.Pospelov, PRD80 (2009) 095002

Secluded U(1) sector with weak admixture to photons: a natural SM extension.

A new light vector boson: the dark photon.

Possible parameters: mixing parameter: $\epsilon \sim \alpha/\pi \sim 10^{-3}$, DP mass: $M_U \sim \epsilon M_Z \sim 100 \text{ MeV/c}^2$.

Can explain some astrophysical observations as well as the muon g-2 anomaly.

NA48/NA62 are well suited to explore the favoured region $(\epsilon^2 \approx 10^{-6}, M_U \approx 100 \text{ MeV/c}^2)$

NA48/2: $\pi^0_D \rightarrow e^+e^-\gamma$ sample

An existing data sample collected in 2003–2004 with a 3-track trigger.
 Trigger efficiency: ~98%.

★ Large sample of tagged $\pi^{0}_{D} \text{ decays: } \sim 2 \times 10^{7} \text{ K}^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}.$

✤ Further π^0_D samples available from K[±]→ π^0_D I[±]ν decays.

♦ Search for $\pi^0 \rightarrow U\gamma$, $U \rightarrow e^+e^-$. BR(U→e⁺e⁻)=1 for M_U<2M_u.

NA48/2: π^0_D M_{ee} spectrum

NA48/2 vs other limits at low M_u

Experimental constraints

Electron and muon g–2: Endo et al., PRD86 (2012) 095029

KLOE-2 [**φ**→**η**e⁺e⁻]: Babusci et al., PLB720 (2013) 111

A1 @ MAMI (Mainz Microtron) Merkel et al., PRL106 (2011) 251802

APEX @ J-LAB Abrahamyan et al., PRL107 (2011) 191804

WASA preliminary $[\pi^0 \rightarrow \gamma e^+ e^-]$: Adlarson et al., arXiv:1304.0671

NB: the NA48/2 curve is the expected sensitivity, not a result!

Rare π^0 decays at NA62

Single-event sensitivities for π^0 decays: ~10⁻¹¹

Decay mode	Experimental status	Reference	Physics interest
π ⁰ →e⁺e⁻γ	BR($\pi^0 \rightarrow U\gamma$)<10 ⁻⁵	WASA @ COSY	Dark forces
	30 MeV <m<sub>U<100 MeV</m<sub>	arXiv:1304.0671	
$\pi^0 \rightarrow e^+e^-e^+e^-$	$BR = 3.34(16) \times 10^{-5}$	KTeV @ FNAL	Off-shell
		PRL100 (2008) 182001	vectors
$\pi^0 \rightarrow e^{\pm} \mu^{\mp}$	BR<3.6×10 ⁻¹⁰	KTeV @ FNAL	LFV
		PRL100 (2008) 131803	
π ⁰ →3γ	BR<3.1×10 ⁻⁸		C violation:
		Cructal Pay @ LANI	BR _{SM} ~10 ⁻³¹
π ⁰ →4γ	BR<2×10 ⁻⁸	CI YSLAI DUX @ LAINL	BR _{SM} =2.6×10 ⁻¹¹
		PRD38 (1988) 2121	NP: light scalars
			$\pi^0 \rightarrow SS$, $S \rightarrow \gamma\gamma$
$\pi^0 \rightarrow \nu \overline{\nu}$	BR<2.7×10 ⁻⁷	E949 @ BNL	RH neutrinos,
		PRD72 (2005) 091102	LFV

NA62: "neutral" π^0 decays

 $\pi^0 o 3\gamma$ C-violating decay: $BR_{SM} \sim 10^{-31\pm6}$ [Dicus, PRD12 (1975) 2133] NP not beyond the corner, e.g. non-commutative QED: $BR_{NP} \sim 10^{-21}$ [Grosse, Liao, PLB520 (2001) 63] BR_{exp}<3.1×10⁻⁸ (π ⁻ stopped at proton target) Experiment: [PRD38 (1988) 2121] $\pi^0 o 4\gamma$ SM: dominated by QED electron-loop, $BR_{SM} = (2.6 \pm 0.1) \times 10^{-11}$ [Bratkovskaya et al., PLB359 (1995) 217] Deviation: e.g. NP involving light scalars, $\pi^0 \rightarrow SS$, $S \rightarrow \gamma\gamma$ BR_{exp}<2×10⁻⁸ [PRD38 (1988) 2121]

NA62 may improve these limits to BR~10⁻¹⁰, however a dedicated trigger has to be implemented

NA62: the invisible π^0 decay

For a given flavour of massive neutrino $(m_v < m_{\pi}/2)$,

 $\mathcal{B}(\pi^0 o
u ar{
u}) pprox 3 imes 10^{-8} k (m_
u/m_\pi)^2 \sqrt{1 - 4(m_
u/m_\pi)^2} k = egin{cases} 1, \ Dirac \ type \ 2, \ Majorana \ type \end{cases}$

From v_{τ} mass: $m_{\nu\tau} < 18.2 \text{ MeV/c}^2$, $\mathcal{B}(\pi^0 \rightarrow \nu \bar{\nu}) < 5 \times 10^{-10}$ [ALEPH, EPJ C2 (1998) 395]

From primordial nucleosynthesis: $\mathcal{B}(\pi^0 \rightarrow \nu \bar{\nu}) < 3 \times 10^{-13}$ [Lam, Ng, PRD44 (1991) 3345; see also Natale, PLB258 (1991) 227]

Possible BR enhancement due to NP with RH neutrino states

Direct experimental limit: $BR < 2.7 \times 10^{-7}$, by-product of the BNL $K^+ \rightarrow \pi^+ v \overline{v}$ analysis [PRD72 (2005) 091102]

> NA62 experimental signature is similar to $K^+ \rightarrow \pi^+ \nu \overline{\nu}$. The limit can be improved to BR~10⁻¹⁰.

Selected recent results, ongoing analyses

$R_{K} = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ beyond the SM

2HDM - tree level

 $K^{\pm} \rightarrow I^{\pm}v$ can proceed via charged Higgs H^{\pm} (in addition to W^{\pm}) exchange

 \rightarrow Does not affect the ratio R_{K}

2HDM - one-loop level

Dominant contribution to R_{K} : H[±] mediated <u>LFV</u> (rather than LFC) with emission of v_{τ} $\rightarrow R_{\kappa}$ enhancement can be experimentally accessible

Masiero, Paradisi and Petronzio, PRD 74 (2006) 011701, JHEP 0811 (2008) 042

$$\mathbf{R}_{K}^{\text{LFV}} \approx \mathbf{R}_{K}^{\text{SM}} \left[\mathbf{1} + \left(\frac{\mathbf{m}_{K}^{4}}{\mathbf{M}_{H^{\pm}}^{4}} \right) \left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{e}^{2}} \right) |\mathbf{\Delta}_{\mathbf{13}}|^{2} \tan^{6} \beta \right] \implies \text{sensitive to}$$
 slepton mixing

MSSM: ~1% effect possible Girrbach and Nierste, arXiv:1202.4906

↔ However limited by the recent $B_{(S)} \rightarrow \mu^+ \mu^-$ measurements Fonseca, Romão and Teixeira, EPJC 72 (2012) 2228

Sensitive to SM extensions with 4th generation, sterile neutrinos Lacker and Menzel, JHEP 1007 (2010) 006; Abada et al., JHEP 1302 (2013) 048

145,958 K[±] \rightarrow e[±]v candidates. Background: B/(S+B)=(10.95±0.27)%. Electron ID efficiency: (99.28±0.05)%.

K_{μ2}: heavy sterile neutrinos

- NA62-R_K subsample: 18.0M K⁺ $\rightarrow \mu^+ \nu_{\mu}$. \rightarrow Search for heavy sterile neutrino: K⁺ $\rightarrow \mu^+ N$.
- ♦ NA62-R_K UL if no backgrounds: $|U_{\mu N}|^{2} < 10^{-7}, 100 \text{ MeV/c}^{2} < M_{N} < 380 \text{ MeV/c}^{2}.$
- Sensitivity is limited by background fluctuation (mainly beam halo).
- NA62-R_K is competitive at high M_N .

E. Goudzovski / UK Flavour / Durham, 5 September 2013

- Peak searches (long-lived v_h)
- 1. PSI, PLB 105 (1981) 263.
- 2. KEK, PRL 49 (1982) 1305.
- 3. LBL, PRD 8 (1973) 1989.

Decay searches (short-lived v_h)

- 4. ISTRA+, PLB 710 (2012) 307.
- 5. CERN-PS191, PLB 203 (1988) 332
- 6. BNL-E949, preliminary **33**

Fits to ChPT description

→ Data support the ChPT prediction: cusp at di-pion threshold

NA48/2 final result: $BR_{MI}(z>0.2) = (0.877 \pm 0.087_{stat} \pm 0.017_{syst}) \times 10^{-6}$ Measurement of the ChPT parameters: publications in preparation

Summary

- ♦ NA48/2 (2003–2004): a multi-purpose K[±] experiment.
 - ✓ K[±] physics at a new precision level (15 PL, EPJ papers so far); ✓ K[±] and π^0 rare decay analyses are on-going.

✤ NA62-R_K (2007–2008): minimum bias electron trigger.

- ✓ Lepton Universality test at record 0.4% precision: BR(K[±]→ $e^{\pm}v$)/BR(K[±]→ $\mu^{\pm}v$) = (2.488±0.010)×10⁻⁵;
- ✓ rare decays, heavy neutrinos: analyses on-going.
- ♦ NA62 (construction/commissioning).
 - \checkmark expected single event sensitivity for K⁺ decays: ~10⁻¹²;
 - ✓ preparing for the physics run in 2014 (low intensity);
 - ✓ a diverse physics programme is taking shape;
 - ✓ friends and competitors worldwide (including J-PARC, FNAL).